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ABSTRACT

Three turbulent shear stress models for use in prediction schemes
for three-dimensional turbulent boundary layers were studied. These
three models were evaluated primarily by comparison of numerical cal-
culations to experimental data.

A significant fraction of the existing three-dimensional turbulent
boundary layer data was examined, reorganized, partially recomputed and
tabulated in a consistent format.

A numerical procedure, suitable for all three shear stress closure
models was prepared. This procedure is an explicit forward difference
method that permits solution of the partial differential equations of
the boundary layer.

All three turbulent shear stress closure models are extensions of
current two-dimensional models:

1. The eddy viscosity model is based on the assumption that the

shear stress profile is a prescribed function of the mean
velocity profile. A two-dimensional prescription (Mellor 1907)
is assumed for shear stress magnitude. The shear stress
direction is computed by assuming that the eddy viscosity is
isotropic (scalar).

2, In the Nash model the shear stress magnitude is computed from

a rate equation based on an approximation of the turbulence
kinetic energy equation. This rate equation is a simple ex-

tension of the two-dimensional equation of Bradshaw et. al.

iv



(1967). The direction of the shear stress is computed by
assuming an isotropic eddy viscosity (scalar).

2. In the Bradshaw model the shear stress magnitude is computed

by the same equation as the Nash method. However a rate
equation, including a turbulence diffusion term is used to

compute the shear stress direction.

In general, it was found that all three methods predict the mean
velocity fields of a wide sample of available experimental results to
within outr estimates of the uncertainty of the data. When compared
with each other, the three shear stress models produce almost identical
results for most flows, However at momentum thickness Reynolds numbers,
Re , below 2000, in cases with strong adverse pressure gradients, the
three methods differ significantly. Direct shear stress measurements
were made in only two of the available experimental flows. For one of
these flows, Johnston (1970), the Nash and Bradshaw models give pre-
dictions of the shear stress magnitude which are significantly better
than those of the eddy viscosity model. For this same flow the Bradshaw
method predicts the shear stress direction slightly better than the

other two models which used the isotropic eddy viscosity assumption

although no model predicts the direction very well,
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CHAPTER 1

INTRODUCTION

A. General Considerations

The fluid dynamic performance of a diverse group of fluid machines,
e.g. aircraft wings, centrifugal compressors and ships hulls, is con-
trolled by the three-dimensional, turbulent boundary layers at the solid
boundaries of the devices. The behavior of the boundary layers is it-
self dependent on the pressure field imposed by the outer inviscid re-
gions of the flow. Although in some cases, particularly when flow
separation occurs, there is a strong interaction between the boundary
layers and the outer flow, in the present work, the outer flow has been
presumed given or known.

The boundary layers in most practical flows are in general exceed-
ingly complex. The flow is unsteady on a large scale, turbulent, com-
pressible and three-dimensional (three velocity components and three
independent space coordinates needed to define the flow field). Never-
theless most of the research to date has concerned the simplest class of
turbulent flows: turbulent layers that are steady in the large, incom-
pressible and two-dimensional (two space coordinates and two velocity
components needed to define velocity field). 1In 1968, a conference was
held at Stanford (Kline et.al. 1969) on prediction methods for this
simplest class of turbulent flows. The predictions of most methods
known in 1968 were compared to a carefully screened set of the available
data. A large number of the two-dimensional methods predicted the mean

flow well, even though none of those presented at the conference



included any but the most rudimentary physics of the turbulent struc-
ture. The best of the two-dimensional methods thus became logical can-
didates for extension to more complicated problems, i.e. those involving
large scale unsteadiness, compressibility and three-dimensionality. Al-
though considerable effort had been expended on such advanced problems
prior to 1968, much of it involved extensions of early methods which
were proven to be second rate or simply unsatisfactory at the Stanford
conference. For example, we worked on a three-dimensional momentum
integral type method based on the Von Doenhoff and Tetervin shape factor
equation. This shape factor equation was shown at the Stanford Confer-~
ence to be unsatisfactory, even for two-dimensional flows.

This report documents our research into the extension of some of
the better prediction methods of two-dimensional, incompressible, steady
turbulent boundary layers into three dimensions.

It is useful to consider briefly the basic ideas underlying three-
dimensional turbulent boundary layer theory. The most general type of
three-dimensional boundary layers are characterized by skewed velocity
profiles, see Figure 1.1. Skewed profiles are distinguished from
collateral profiles in which all the velocity vectors from the wall out-
ward lie in one plane i.e. wS =0 in Fig. 1l.1l. Two-dimensional layers
and limited classes of three-dimensional layers have collateral velocity
profiles. It is common to describe three-dimensional boundary layer
profiles in terms of two wall-parallel velocity components - one in the
direction of the outer inviscid flow, the streamwise component US, and

another perpendicular to this direction, the crossflow component, ws.



The wall-parallel velocity vector has magnitude wz + Uz and its an-
gle relative to the inviscid external streamline is B = tan_lWS/U .
s

The angle of the limiting wall streamline* is

_1 A
B, = tan (}1’_13 WS/US) (1.1)

Skewing (non-zero ﬂw or ws) of the boundary layer is commonly
caused by three effects. (i) It may result from an external free
stream pressure gradient with a component normal to the local free
stream direction. The pressure gradient's normal component causes ac-
celeration of the low inertia, inner layer fluid such that the fluid
tends to turn with a smaller radius of curvature than that of the ex-
ternal flow. This mechanism is responsible for the boundary layer
crossflows on yawed wings and on the walls of curved ducts where it is
often referred to as secondary flow. (ii) Another cause of skewing is
the transverse motion of a wall under a boundary layer in a direction
perpendicular to the main flow. This results in crossflows being
formed purely by transverse shear stresses. End wall boundary layers
in axial flow compressors in part fall in this class. (iii) Finally,
skewing may be caused by a combination of the above effects when the
moving wall follows a curved path and induces, by drag action, the
inner layer fluid particles to follow curved paths. This fluid motion
in turn creates a pressure gradient normal to the wall velocity which
tends to give the inner fluid layers a component of velocity perpendic-

ular to the wall velocity. Flow over a disc rotating in a stationary

*See Maskell (1955), Johnston (1960a) for concept of limiting wall
stream-line.



fluid is the most common example of this class of flow. In summary
whenever a pressure gradient or shear force exists perpendicular to the
external free stream velocity direction, the potential for crossflow

exists.

B. Experimental Data

Although almost all flow geometries lead to three-dimensional
boundary layers which are turbulent at high Reynolds numbers, only a
limited number of geometries and flow conditions have been tested that
have produced data suitable for developing and evaluating prediction
methods. Figure 1.2 shows the most common experimental configurations
which are:

(a) Wing-Body junctions (boundary layers on the body wall)

(b) Swept wings, finite and infinite in length

(¢) Curved ducts (boundary layers on the flat walls)

(d) Radial vaneless diffusers with axisymmetric, swirling flow at

inlet

(e) Rotating discs
As part of this research program, a high percentage of available data
sources were gathered and examined for content, completeness and useful-
ness as a basis for testing prediction methods. A summary of the re-
sults of this data study are presented in Tablel.l. As can be seen, only
two flows include direct measurement of the shear stress profiles and
several flows are missing vital data such as the external pressure
field. 1In fact, of the total of 68 flows shown in Table I, only 34 are

complete enough to be usable and only 18 are expected to be of signifi-

cant value.



There exists a subset of these data which are particularly useful
because while the velocity field must be described with three velocity
components, only two independent space coordinates need be used to pre-
dict tihie boundary layer development. This two-space coordinate subset
includes:

1. Plane of symmetry flows on flat walls upstream of symmetrical

wing-body junctions.+

2. 1Infinite swept wing flows where the external pressure is con-

stant in the spanwise direction.

3. Axially symmetric flows in vaneless diffusers.

4. Rotating discs and bodies in axially symmetric free stream

flows.

Flows of this type can be used as a first test of a prediction
method for three-dimensional turbulent boundary layers without necessi-
tating the development of a computer program using a three-dimensional
grid and without the necessity of handling difficult boundary conditions
at the transverse edges of the computed flow field. Most of the flows
of the two-space coordinate subset, denoted by a * in Table 1.1, have been
examined by us more closely than the other flows. The pressure gradi-
ents in the free stream have been extracted from the free stream veloc-
ity data and the wall shear stresses have been estimated by assuming two

1 YH
different fits of the velocity profiles to the "law of the wall.' In

+In these flows, only two velocity components are needed but a gradient
of the third component is required.

++None of the data selected from Table 1.1 had direct measurements of the
wall shear stress. Recently, Pierce and his coworkers have been de-
veloping instrumentation for the direct measurement of the wall shear
stress in three dimensions (Kromenhoek and Pierce, 1968).

5



addition, momentum and displacement integral parameters have been calcu-
lated for each velocity profile and all the results have been tabulated
and plotted in a consistent format. The results of this work to codify
che data are used later on in this report and are presented and dis-

cussed in their entirety elsewhere (Wheeler and Johnston, 1971).

C. Separation in Three Dimensions

In several of the flow geometries discussed above and in many prac-
tical applications, the flowing fluid separates from the surface. Since
it is desirable that prediction methods be capable of predicting this
phenomenon a brief discussion of flow separation is useful.

A unique and most important characteristic of a three-dimensional
boundary layer is that the flow can separate from the surface without
the mean suriface shear stress becoming zero. This type of three-

. . . . . + . . .
dimensional separation, known as ordinary separation, 18 distinguish-

able from singular separation whose principal characteristic is that the

local, mean wall shear stress is zero at the separation point. Separa-
tion in two-dimensional flows is singular.

The infinite swept wing flow, shown in Figure 1.3, serves to illus-
trate the occurrence of ordinary separation. When the pressure gradient
force on the fluid (which has a component only in the chordwise direc-
tion) is very strong relative to the shear stress force, the chordwise
component of velocity in the boundary layer will continuously decrease
as the flow approaches the trailing edge. Since the fluid at the same

point feels no spanwise pressure gradient forces, it will appear as one

+See Maskell (1955) for a more complete discussion of separation in
three dimensions.



views the boundary layer velocity profile along the y axis that the
local velocity vector is rotating toward the spanwise direction as the
flow proceeds downstream. The only forces that can resist this rotation
are shear stresses. Since we have assumed a pressure gradient suffi-
cient to overcome the chordwise shear stress effect, the velocity vector
near the wall will eventually have rotated as we follow the flow down-
stream until it is directed parallel to the leading edge (see the limit-
ing wall streamline in Figure 1.3). With no flow in the chordwise di-
rection, the fluid at a slightly larger chord must have come from somewhere
other than upstream, i.e. a backflow at the surface from the trailing
edge 1s required. Since the spanwise velocity is non-zero except at the
surface, there exists a finite wall shear stress along the separation
line. 1If the infinite wing had no sweep and no initial crossflow, sin-
gular separation would occur.

Singular separation can occur at a point on a line of ordinary sep-
aration. This occurs at the symmetry plane when the flow leaves the
body in a symmetrical wing-body junction flow. 1In the case of axially
symmetric flows such as radial vaneless diffusers ordinary separation
occurs when the limiting wall streamlines become tangent to a circle

about the axis of symmetry.

D. Governing Equations

When boundary layer approximations are applied to the Navier-Stokes
Equation in the cartesian coordinate system shown in Figure 1.4 and the
assumptions are made that the flow is over flat surfaces, steady in the
mean, incompressible and has constant properties, the equations for the

mean motion in inertial coordinates are:



continuity

dU , oV . M
Sty =0 (1.3)
x-momentum
or
au el ou __ 10p 1 _x
U5X+V6y+waz—-pax+pay (]..4)
Z-momentum
: o
aw M 10 1
UtV 8; WS, T, 55 + o —;E (1.5
Euler's equations apply to the free stream, i.
oy M
) e B
0 = - U, 5= w Sx (1.6)
U MW
1Oy — 2w ==
T p Oz Voo 3z o Oz (1.7

In the present work, the assumption of zero z derivatives
(3( )/az = 0) has been made for infinite swept wings. In an T, 8 and
z cylindrical coordinate system (r, 8, z) applicable to the vaneless
diffuser and rotating disc flows, (see Figure 1.2d) derivatives with
respect to 6 are assumed to be zero (9( y/o8 =0). A combined form
of the equations valid in both coordinate systems is obtained if in the
cylindrical coordinate system, 2 is replaced by y, x + r rather
than r 1is the radial coordinate where r is the inside or initial
radius. R 1is the local radius curvature of the transverse, © coor-
dinate axis. 1In the present work R =71 =X+ r, but in general, R

could be a function of x, R(X).

continuity
0 (1.8)

Y
]



X-momentum

--1a, 1 (1.9)
pdx " p Jdy '

Z-momentum

U = + VvV 5; + (1.10)

.

M M 3uwf 1
The terms in brackets 3 } are applicable only for the axisymmetric
cases. For infinite wings, R 1is effectively infinite.

These equations are valid for laminar flow in which case the shear

stresses are evaluated from:

v dU/dy (1.11a)
v W/dy (1.11b)

TX/D

v, /0
For turbulent flows, equations 1.3 to 1.10 are valid for the mean motion,

and the shear stresses are a combination of the viscous stresses and the

turbulent, or Reynold's stresses:

- u'v' + v AU/dy (1.12a)

- v'w' + v M/ (1.12b)

/P

T
WL
Approximate closure equations to be discussed in Chapter 2 are necessary

to approximate the Reynolds' stresses and to solve the set of equations

for turbulent flows.

E. Methods of Solution

Since there exists no general analytic solution to the turbulent
boundary layer equations in two or three dimensions, it is necessary to
use numerical techniques. There are two general numerical methods for
solving the turbulent boundary layer equations: (i) the differential
approach in which equations 1.8 to 1.10 (together with the shear stress

closure assumptions) are approximated by finite differences - finite



differences being required in both the x and y directions. (ii) The
integral approach in which equations 1.8 to 1.10 are first integrated
with respect to y and the resulting differential equations solved by
finite differences in the x direction. These integrated equationms,
known as the momentum integral equations are generally used with a
streamline coordinate system (Figure 1.1) where one momentum equation is
obtained along an external streamline direction and the other normal to
that direction. Thus, if the external streamline is curved, the coor-
dinate system will rotate as the computations proceed. In differential
methods, it is most common to use a coordinate system which is fixed in
space or has some simple well defined motion, e.g. a coordinate system
fixed to the surface of a rotating disc.

Due to difficulties in developing satisfactory integral methods
(discussed in the following section) only differential methods have been
treated in detail in the present program. In the following section,
integral methods are briefly outlined and some of their difficulties

emphasized.

F. Integral Prediction Methods

The momentum integral equations in three dimensions can take the

form (see Cooke and Hall (1962))

6§, N
1 ) 2 1 3 2 1 M
5 5 811%0 + T3 3 %) Thig O
h Q. h,Q 1%
(1.13)
. 8, N +(911'922) oh, . (26, ,+28,) ihl _ St
h,Q, eld hlhz om hlhz 3 2

in the streamwise direction (see Figure 1.1) and the form

10



1 9 2 1 o 2
— 5 (Q[8,,-28, )+ 5 (8,.0Q
thi S 12 %2 thi 3F (82,0
(1.14)
X (2912+252) ah2 (ezz-elfal) ahl . Ce.
hh 3¢ hbh, O nBy 72

in the crossflow direction.

hl and h2 are the metric coefficients defined so that an element
of distance, ds, 1is given by d52 = hidn2 + h; d§2 + dyz. h1 and h2
depend on the external streamline shape only and are presumed to be
known function of 7 and { once the external pressure field is estab-
lished. Bw is the angle of the limiting wall streamline and C is

fs

the dimensionless streamwise component of the wall shear stress
1 2
Cfs = Tsw /Zme
The remaining dependent variables in equations 1.13 and 1.14 are known

as integral parameters and are defined as:

, 8 p 8
8 =g [ QU dy 01, = 5 [ U, (QU)dy
© 0 QCc o)
8 &
- L L 2
5, = q 1) w_dy 8, = 3 f W' dy (1.15)
oo 0 Qor o]
;8
8, = g;_ fo QU)W _dy H=56/6,
(e9]

The momentum integral equations represent two equations in seven
unknown dependent variables. Thus a considerable amount of additional
information is required in order to effect a solution. The various clo-
sure assumptions used in two dimensions are well illustrated in Kline et
al. (1969). This additional information is usually supplied in two

forms. The first form is that of auxiliary equations which in some way

11



directly relate the variables appearing in equations 1.13 and 1.14 to
each other. For example, in three dimensions it has been found that the
streamwise component of the velocity often has a profile which is very
similar in shape to a known two-dimensional form. Thus, two-dimensional
wall shear stress laws have met with some success when applied in three-
dimensional prediction methods. Perhaps the most famous of these wall
shear stress laws is that of Ludwieg and Tillman which when carried over

to tllree dlIneIlSlorlal h.as th-e fornl
l . ()l (). 268

c. = 0.246[e 5
11

fs (1.16)

The second manner in which the problem is closed is by the direct
use of assumed functional forms for the velocity profiles, both in the
streamwise and crossflow directions. Universal functions of the form
U/UOO = f(y/é) have met with very little success in prediction of two-
dimensional flows and there is no reason to believe that they would be
more successful in three-dimensional flows. However, one parameter
velocity profiles are a considerable improvement and one by Ling (see
Hirst and Reynolds, 1969) performed satisfactorily in an integral method
submitted at 1968 Stanford conference. He used

U -U

00
U
T

= a1 - y/8)° (1.17)

Such a velocity profile could be used in a three-dimensional prediction
scheme if it were assumed that it represented the streamwise component
of the velocity. Coles (1956) and others have proposed two parameter
representations for two-dimensional velocity profiles which will gener-

ally fit data much better than equation 1.17. With these profiles, a

12



skin friction law is generally implied and an equation such as equation
1.16 is not needed.

Crossflow velocity profiles have proven much more difficult to
describe with a functional form than streamwise profiles. Prandtl
(1946) proposed that crossflow velocities could be represented by the

form

=

s _
7. = canewg(y/s) (1.18)

where g(y/é) is a universal function, and Mager (1952) suggested
B(y/8) = (1 - y/8)° (1.19)

This profile model is simple - it requires only one parameter, Bw
Figure 1.5 shows some data of Gardow (1958) and Bradshaw and Terrell
(1969) plotted in the form of equation 1.18. The data is too high
relative to the Mager profile for the most part but does appear to
approximately follow one functional form. The profile data of Cham
(1968) in Figure 1.6 shows a somewhat different behavior and could not
be fitted by a simple function of y/é. Nevertheless, the Mager profile
is at least a fair approximation to the data and may work satisfactorily
in some cases.

Another method of crossflow profile description is the polar pro-
file method. Figure 1.7 shows some typical crossflow data plotted in
this form. In this approach, it is assumed that the crossflow can be

expressed in the form:

U
£f(== , Parameters) (1.20)

_s
e R

=
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Johnston (1957) proposed a two region form of this function - an inner

region where

W U

S s
— = — tan 1.21
Q. o, (1.212)
and an outer region where
W U
= = all - —-S-> (1.21b)
Q. Q. )

A is now a second parameter. This model is also shown on Figure 1.7
and coincides with the data well except in the region of the peak. Cham
(1968) demonstrates another limitation of this method - that the cross-
flow cannot generally be straight all the way to the wall. For inte-
gral methods however, this is probably not a practical limitation. 1In
order to improve the fit of the polar model to the data in the region of
the peak, Eichelbrenner (1963) proposed using polynomial fits of the

form

n
Ws _ Ys
2. g y (1.22)

where Ai(i = 1,2,...n) are constants. Figure 1.8 shows the fit of a
fifth order polynomial to the data of Gruschwitz (1935) and Johnston
(1957) . 1In some cases the fit is very good but in others a definite
discrepancy appears in the outer part of the layer. This latter problem
can be quite severe as shown by the data of Bradshaw and Terrell (1969)
and Klinksiek and Pierce (1968) in Figure 1.9. The Eichelbrenner pro-
files use the position of the peak as a parameter to determine one of
the Ai and Klinksiek and Pierce (1968) found that for all orders of n
less than six, the Eichelbrenner profiles could not match the data when

the peak was at large values of US/Qw. Klinksiek and Pierce also found

14



that some other polynomial suggestions of Eichelbrenner (1966) and
Shanebrook (1966) met with various difficulties. Figure 1.10 shows some
of Klinksiek and Pierce' "crossover" profiles which would challenge any
designer of crossflow velocity profile models.

Coles (1956) proposed a three dimensional form of the law of the

wall-law of the wake

«
Ol

a

=

3=6T[%zn - +C+'K-w(y/6)] (1.23)
where aT is a vector in the direction of the wall shear stress that
has a magnitude V;;7E- HaT is a wake vector whose direction is set so
that the free stream velocity vector is in the correct direction. II is
thus a tensor whose magnitude sets the wake fraction of the profile.
Components of the velocity in a direction perpendicular to the wall
shear stress are proportional only to the wake function w(y/é). Figure
1.11 shows some data that show approximate agreement with Coles' model,
but Figures 1.12 and 1.13 present data which shows very poor agreement.
Pierce (1966) argues that the plane of symmetry flows which were used to
test the Coles model (Figures 1.12 and 1.13) were special cases in that
the flows move toward separation too rapidly and the profiles do not
reach an "asymptotic" or equilibrium form. He shows that the wake com-
ponent of the collateral flow on the plane of symmetry of the Johnston
(1957) data does not develop a wake function form ((x(y/8) above) either.
However, this argument can be turned into a criticism of integral meth-
ods for both two and three-dimensional cases because rapidly separating
flows are often of practical interest,

If one were to consider the Mager crossflow profile to be satisfac-

tory, and were to use a one parameter streamwise velocity profile, the
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problem would be reduced to three equations (two momentum, one skin-
friction) in four dependent variables. Thus, for closure an additional
relationship is needed. Head, and his co-workers at Cambridge (see
Cham, 1968) have completed a similar set of equations by using an en-

trainment relation

(8-8)) = CE(H5_61) (1.24)

3

where CE is a function of a new shape parameter Hé-él and § is the
boundary layer thickness. Cham, (1968) found however that CE was ge-
ometry dependent as shown in Figure 1.14. It should be noted however
that the entrainment approach, in various forms, works well in two
dimensions. Recently Crabbe (1971) and Townsend (1970) have worked on
entrainment models which may lead to a more satisfactory form.

It can be seen that the extension of integral methods to three
dimensions is far from simple. To date, three-dimensional turbulent
prediction methods using integral methods have been unsatisfactory in
that they have been unable to provide predictions agreeing with a wide
variety range of experimental data. The extension of differential
methods to three-dimensional turbulent boundary layers, as will be seen
in Chapter 2, is easy by comparison. As a result, it was decided to
study only three-dimensional extensions of differential methods in the
present research program. The development in the later 1950's of modern

high speed digital computers has made one disadvantage of differential

methods, substantially longer computer run times, much less significant.
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G. Objectives

In summary, the objectives of this research program were:

1.

To collect and organize available data on three-dimensional
turbulent boundary layers

To develop a numerical technique and computer program to solve
the differential equations of the boundary layer such that
various three-dimensional prediction methods based on different
models for the turbulent shear stress could be evaluated with-
out introduction of ambiguity due to differences in numerical
technique used with each model.

To critically examine the selected prediction methods, both in
relation to each other and in relation to existing experimental

data.
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Table 1.2 - Key to Symbols and Remarks in Table 1.1

[A] Definition of Symbols

AZ - Assumed zero

GA - Graphical values given - all runs and/or profiles

GS _ 1 1 1 - some t H 11 1

TA - May be 1nferred from given data - all runs and/or proriles
IS _ 1 " 1" " " i - some i i " "

NC - Not calculated

NM - Not measured

NR - Not reported, may have been measured

TA - Tabulated values - all runs and/or profiles

TS _ 1t 1" - some " bl 1 1

? - No information, or considerable uncertainty indicated

[B] Numbered Remarks

1. Report suggests that complete data will be published
at a later date.

no

Unpublished report obtained from authors.

Graphical Profilles may be of limited value since the
layer thickness not reported.

o

L., Only cne profile given. Other integral data might be
extracted with much effort. Source of moderate Ccros:c
flows not clear.

5. Given integral parameters ipnaccurate, see Cham [1968].

6. Although flow at moderate subsonlc Mach number,variatioas
were small and density changes thought not to be impertant.

7. Value of ’0 for air at normal (room) pressure and
temperature willl probably suffilce.

. One-dimensional turbulence intensity measured along loral
mean flow direction.

9. Some question of completeness here as original data
source not in hand.

10. Initial and normalizing conditions not given directly.
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Figure 1.1 Three-Dimensional Wall-Parailei Velocity
Components
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Surface

Figure 1.4 - x-y-z Coordinate System
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CHAPTER 2

SHEAR STRESS MODELS

A. General Considerations

As mentioned in Chapter 1, a differential prediction method re-
quires closure assumptions for the turbulent shear stresses. Since the
mechanisms of turbulence production in three dimensions are not expected
to be essentially different from those in two dimensions, logical exten-
sions of two dimensional closure models are expected to be appropriate.
At the 1968 Stanford Conference (Kline et. al. 1969) differential meth-
ods with closure assumptions based on an eddy viscosity and differential
methods with closure assumptions based the turbulence kinetic energy
equation placed in the top third, according to the evaluation committee.
Differential methods using a third assumption, the mixing length model,
placed in the middle third. In the present work, three-dimensional
methods using extensions of all three types of closure assumptions above
have been studied and compared to the data.

For purposes of discussing fluid stresses, turbulent boundary lay-
ers can be considered to have two principal regions, an inner region or
viscous sublayer in which the effects of molecular viscosity predominate
and an outer turbulent region in which the turbulent or Reynolds
stresses are dominant. For the present work, calculations are only made
in the fully turbulent region and empirical functions are used to bridge
the gap that links the turbulent region to the sublayer and the wall.
Thus, for example, the "no slip" condition at the wall is not satisfied
explicitly but the "law of the wall" is used in its place. Experimental
data indicates that at y+ = 30 the velocity profile has deviated very
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little from what would be expected in a fully turbulent flow near a
wall. Thus y+ = 30 has been selected for the innermost mesh point in
the calculation scheme where y+ = yQT/v and QT is V;;7E. Extrapo-
lation to obtain wall stress and the angle Bw are thus important parts

of the methods developed.

B. Shear Stress Closure Assumptions

In this chapter, only those closure assumptions which we have actu-
ally used for computations are described. A more complete summary and
discussion of closure assumptions is given by Reynolds (1970) .

B.1 Mixing Length Closure

The oldest of the shear stress closure assumptions is the mixing
length hypothesis. Spalding used such a model in the work he did for
the 1968 Stanford conference (Kline et. al. 1969). 1In the present work,
some computations of experimental flows have been made using the mixing
length and it has also been used extensively to generate starting shear

stress profiles. 1In two-dimensional flows the mixing length £ 1is de-

fined by

T=pz2§—‘yj-%$ (2.1a)
By analogy to laminar flow, an eddy viscosity can be defined as

T = p€ %5 (2.1b)
so the eddy viscosity is

€= ﬂz ) (2.1c)

Sy

¢ must be selected to produce shear stresses which agree with available
data. This has been done on a number of occasions (e.g. Spalding at the

Stanford conference) and a useful formulation is
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= K v/ <
="y /8995 < T
0.079
= 0.079 /
2=0.000gg5 /8595 > Ty (2.2)
K = 0.40
where 5995 is defined as the value of y where Q/Qoo is 0.995.
A possible extension of this model to three dimensions is to take
254|
€=1 2.3
5 (2.3)
where Q 1is the velocity vector parallel to the wall
Q= iU + W (2.4)
Yo
Q_ >, W
=i+ i< 2.5
S-igT5 (23
or

—ggl ‘%YLDZJF @2 (2.6)

£ 1is assumed to be a scalar and to have the same form as that used for

two dimensions, e.g. Equation 2.2.

The shear stress direction can be calculated by assuming that the
eddy viscosity € 1is a simple isotropic scalar. That is, € 1is
assumed to behave like a molecular viscosity in a sheared fluid except
that the eddy viscosity is much larger. Thus, by analogy with equation

l.11a and 1.11b

T = p€ (2.7a)

(2.7b)

T
2

¥ HNY

ol ~
This would be a good assumption if boundary layer turbulence were a ran-
dom, disoriented type of motion such as occurs behind a grid. However,
boundary layer turbulence appears to have a vorticity with favored di-
rections and so the isotropic eddy viscosity is at best a crude

approximation.
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The mixing length model used here then consists of eqs. (2.2),
(2.3), (2.6) and (2.7a and b).
B.2 Eddy Viscosity Model

Mellor (1967) and others have used a variation of the mixing length
hypothesis called the eddy viscosity model. Both Mellor and Cebeci used
such methods successfully at the 1968 conference. The two-dimensional
form of Mellor formulation® is the same as the mixing length model in

the inner portion of the fully turbulent part of the layer:

€ = (Ky)2

inner

% (2.8a)

In the outer portion, Mellor suggests use of a constant eddy viscosity

sutep = (0.016)8,U_ (2.8b)

This model can be extended to three dimensions using the same idea dis-

cussed for the mixing length model, i.e.

2 2
2. Iou W
€ er (0.4y) &) +<——5y) (2.9a)

€ irep = 0-0168,Q (2.9b)

The shear stresses in Mellor (1967) are also computed on the basis of an
isotropic eddy viscosity so equations 2.7a and 2.7b also apply to the
eddy viscosity model used in this study.
B.3 Two-Dimensional Bradshaw Model (Turbulent Energy Equation)

Bradshaw (1967) proposed a two-dimensional shear stress model fol-
lowing earlier work of Townsend (1960). It is based on the turbulence

kinetic energy equation (see Reynolds morphology (Kline et. al. 1969)).

*Mellor uses K = 0.41 but 0.4 has been used in the present work.
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production diffusion

% p[? %&— +V %&—] =T %g - %; [p'v' + % P q2v'] (2.10)
dissipation
+ p€

Bradshaw made a number of assumptions in order to make this equation
useful for computations. First he assumed that the turbulent shear
stress is roughly proportional to the turbulent kinetic energy

T=aq (2.11)

As a first approximation, Bradshaw concluded that a constant value of
0.15 for a would be satisfactory but said that a could be made a

function of y 1if necessary. The dissipation term is approximated by

3/2
€ = (G7)) il (2.12)

L

where L 1is the dissipation length, a function of y. Finally, Brad-
shaw made a large eddy transport assumption for the diffusion term and

postulated

p'v' 1 2., _ 1/2_, 3/2
St v G TmaXT/D (2.13)

where G 1s a universal function of y. Bradshaw suggests functional
forms for L and G based on his examinations of data (Figure 2.1).

The resulting equation for the shear stress is:

d T o T, _TQOU 1 3/2 Tmaxl/zé Gt

UX(E)+V§Y—(E)_QB§_E(§) " T Y &) 1w
In the remainder of this report, 7T/p will be replaced by T for
simplicity.

Bradshaw's prediction method performed well at the 1968 Stanford

conference. One feature which makes it significantly different from the

mixing length and eddy viscosity models treated in this report is that
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it allows for a "shear lag". That is, a given mean velocity profile can
have different shear stress profiles depending on the past history of
the flow. 1In the mixing length and eddy viscosity models used in this
reporf,, the shear stress is a unique function of the mean velocity
profile.

Another interesting feature of the Bradshaw method is that with the
large eddy assumption for the diffusion, the equation system 1is hypér-
bolic. Bradshaw and his coworkers (Bradshaw 1967) proved this point by
deriving the direction of the characteristic lines and the appropriate
ordinary differential equations valid along the characteristics. 1In
fact, Bradshaw's computer programs for both two and three-dimensional
calculations uses the method of characteristics. The mixing length and
eddy viscosity assumptions discussed here produce parabolic equations as
do the laminar flow shear stresses and are thus not solvable by the
method of characteristics.

Experiments show that for flows not too near separation, T varies
slowly (by factors of 2 at the most) as the wall is approached. In
addition, U and V decrease as the wall is approached. Thus, to
first approximation, the mean convective terms on the left of Equation
2.14 do not change order as the wall is approached. Since near the
wall, G and L are small and %g is large, the dominant terms in

Equation 2.14 are the production and dissipation terms. Thus

3/2
AU T
R (2.15)
or 5
T o= Lz(%’) (2.16)
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Since Bradshaw has proposed that L = ¢ = 0.4y in the inner part of the
turbulent region of the flow, it can be seen that near the wall, the
Bradshaw method reduces to a mixing length method. In some cases how-
ever, the shear stress will lag the equilibrium (mixing length) value
which Equation 2.16 would predict.
B.4 Nash Method (Turbulent Energy Equation)

Nash (1969) proposed a three-dimensional extension of the Bradshaw
model. The equation for the shear stress magnitude proposed by Nash (an
approximation of the three-dimensional turbulence kinetic energy equa-

tion) is

3/2
U%+V%Ty—=2a[TX%+~rz%-I—L———§y—(cw;£i)] (2.17)

To find the direction of the shear stress, Nash used the isotropic eddy

viscosity formulation which may be written

Tx _ W/
= Sy (2.18)

Nash also proposed slightly different values of L and G than given
by Bradshaw. 1In the present work, predictions which are labeled Nash use
the Bradshaw functions for 1L and G, but equations 2.17 and 2.18 to
compute the shear stress.
B.5 Three-Dimensional Bradshaw Method (Turbulent Energy Equation)

When Bradshaw himself approached the three-dimensional problem, he
took a different approach from that of Nash. Bradshaw started with the

exact equations for the mean x and y components of the Reynolds

stress, - pu'v' and - pv'w'. With some approximations and the re-

quirement that the results be compatible with his two-dimensional result,
he suggested the following equations:
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or or - T T
X X X o) 1/2
U tV 5 2alT -t —‘ay(GTmaXTX )] (2.19)

feli]

Sy

B'rz Brz T w7 Tl/z 3 1/2
Ug‘+V$— ZaT-a-y— —E— -E(Tmaxﬂrz)]

(2.20)

Alternatively, these equations can be expressed as Equation 2.17 for the

shear stress magnitude and an equation for the shear stress direction,
(/7))

U———BTZ/TX+v—va——aTZ/TX=2a—T— M, X -Gl/zé-(:E 2.21

ox y TZ TX aY TZ 5y> Tmax ay T (2.21)
X

This equation differs from the isotropic eddy viscosity model in two
important respects. First, the addition of the diffusion term means
that in the outer part of the layer, the equilibrium shear stress di-
rection can be different from the direction of the mean velocity gradi-
ent. Secondly, the shear stress vector direction can lag the equilib-
rium value.

A total of four three-dimensional shear stress models have been
presented here. They are summarized in Table 2.1, The mixing length
and eddy viscosity models are similar in most respects and thus exten-
sive calculations have been done only with the eddy viscosity model.
Any one of these shear stress models, together with the momentum and
continuity equations (equations 1.8 to 1.10) form a closed set. The
only additional requirement needed to perform calculations are the
boundary conditions, both at the wall and at the outer edge of the

boundary layer.
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C. Boundary Conditions

C.1 Outside Edge Boundary Conditions

For infinite wing flows, the boundary layer velocity is forced to

be the prescribed free stream velocity

3
lim U gg =
y-*oo
. P .
Since =~ 1s zero,
oz
lim U g% =
y—’OO
so
wm =

For the axisymmetric vaneless diffuser

lim @-ﬁ
ox R
y 7
and
. M W
1lm(’ax+R =
y“’OC

As the edge of the boundary layer is approached,

zero and the shear stresses also approach zero.

the grid is expanded in the

satisfied by increasing the distance between the mesh points.

by allowing

dp
dx (2.22)
0 (2.23a)
constant (2.23b)
cases, the outer conditions are:
dp
" dx (2.24)
=0 (2.25)
QH and §E become
Sy Sy

In the computations,

y direction so that these conditions are

In some

cases, this has required that the computing grid be extended to 1.86995.

C.2 Wall Boundary Conditions

The general boundary conditions which must be satisfied at solid

walls are the "no flow" (conservation of mass) and "no slip" conditions

and =z

which specify that the vy, x

at the surface.

the fluid velocity changes very rapidly with increasing y -

46

However, in the region close to the wall

components of velocity are zero

+
(y = 30),

in fact,



it is common for the velocity to reach 50% of the free stream velocity
in only 5% of the boundary layer thickness. This large y gradient of
velocity, which would require a large number of grid points for compu-
tation, combined with the necessity of considering both turbulent and
viscous shear stresses in the wall regions makes it desirable to use
empirical functions to pass over this region. This approach does not
satisfy the no-slip, no flow conditious directly. These conditions are
implicit in the empirical functions.

In two-dimensional flows, a function known as the "law of the wall"

describes the velocity profile in the wall region

e _
o (yQ./Vv) (2.26)

In the fully turbulent part of the flow, the law of the wall takes the

form

Q 1, 7%
Q" tn T+ A (2.27)

This expression can be derived from the mixing length formula if it is
assumed that the shear stress is constant, and equal to the wall value.

Equation 2.27 also applies to three-dimensional flows if the assumption

xl XN
IBSI =5 (2.28)

can be made; an assumption which is quite good in most cases. In fact

if the velocity direction has a linear variation of 4 degrees (which is
high) between the wall and y+ = 30, laa/éy\ deviates from OQ/dy by
less than 5% at a y+ of 30. The deviation is less at lower values of
+

y . A somewhat more general form of Equation 2.27 is found if it is

assumed that the shear stress magnitude varies linearly between the wall
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and the point in question. The resulting expression, which was first
derived by Townsend for two-dimensional flow (in a slightly more sophis-

ticated form) 1is:

yQ
e _1, "% 1 [ 2 1/2 ]

== /n + A + 24n + 2(1+%) -1 (2.29)
QX v « (L) 241

-
where

X = T/Tw -1
In our computations, this expression is used to compute the wall shear
stress magnitude by substitution of the value of the computed velocity,
Q, and shear stress Tt at the first mesh point out from the wall and
iterating to get QT. K 1is taken to be 0.4 and A to be 5.0. The
wall shear stress thus obtained reenters the calculations because it is
used to calculate the shear stress gradients 8Tx/ay and BTZ/By,
which appear in equations 1.9 and 1.10, at the first mesh point.

To calculate the shear stress gradients, it is also necessary to
know the direction of the wall shear stress. The direction of the shear
stress vector changes much more rapidly than the direction of the veloc-
ity vector in the wall region. This can be seen by examining the polar
plot shown in Figure 2.2 and noting that if the isotropic eddy viscosity

assumption is valid it follows that

To  (M/oy\ _ [
2 (3)- @)

Between the origin and the peak of the polar plots, the shear stress

direction has varied from Bw+'to zero whereas the direction of the

+At the wall, the shear stress and the limiting wall streamline must
have the same direction.
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velocity has changed only slightly. Several methods were tried to find
the direction of the wall shear stress (Appendix B) but difficulties
were found with most of them. The most satisfactory method appeared to

be extrapolating to the wall from the first point away from the wall by

Qy

2
d are estimated 0
a Taylor series where the derivatives Sy and £y ted from

ay2

the first three mesh points in the y direction.

) .
X 5 Oy 2 (2.31)
dy

This is a slight improvement over simple linear extrapolation from the
first two mesh points away from the wall.
The final boundary condition is the specification of the normal ve-

locity at the first mesh point, Vl' V1 can be found from an integra-

tion of continuity (equation 1.8)

y
1
v, = ] (gg+ %)dy (2.32)

o}

If it is assumed that the flow is collateral between the wall and the

first mesh point

U = Q coSs ’Yl (2.33)
and
Ay
%g = gg cos Yl - Q sin Yl sgl (2.34)

The velocity Q was assumed to be represented by Equation 2.27

+
between y =11 and y+ = 30 and by

Q . 2.35)
Qq- yQT/v ( )

from the wall to y+ = 11. 1If the differentiation of Equations 2.27 and
2.35 and subsequent integration of Equation 2.32 are performed, the fol-

+
lowing expression is obtained for V aty = 30:
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v = cos Yl 405y S;I/QT + 298v/R

ayl (2.36)
+ 296.5 sin Yl =V

3Q oy

S;I and S are evaluated by differencing from previously computed
profiles. In most cases, the first mesh point is very close to the wall
and V1 = 0 1is a satisfactory approximation. This assumption (V1 = 0)

has been made in the plane of symmetry flows but expression 2.36 above

has been used for the other flows.

D. Summary

The basic idea pursued in this report is that until each of the
ideas presented here for shear-stress closure of the three-dimensional
boundary layer problem is tested, it is futile and perhaps unnecessary
to develop new and potentially more complex schemes. In the following
chapter a numerical computing scheme into which each of these shear
stress models can be tested is developed. The computing method is not
intended to be the ultimate in efficiency, but rather to allow a proper
test of the closure models outlined here. The computed results are com-
pared with actual data and to each other in chapters 4 and 5. Without
proof at this point, it is worth stating one of our principal conclu-
sions: the current shear-stress closure models are sufficiently accu-
rate to deal with all problems (except possibly those of the rotating
disk type which was not tested) on which data are currently available.
Thus, on a practical level we do not recommend major theoretical efforts

on closure schemes for this kind of problem at the present time.
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Table 2.1 SHEAR STRESS MODELS

1. MIXING LENGTH

1/2
T = zz U 24— QU ’ U
X dy dy dy
1/2
T_ = Lz U 2-+ XM ’ M
z oy Ay dy
4 = 0.4y y/6995 =< 0.198
g =0.0798y4, y/6995 =>0.198
2. EDDY VISCOSITY
el
L
-]
T2 T € dy
1/2
2 2
- 2 (2u M
€inner - (0-4y) <6y t Sy >
€ourer = 0-0168,Q,
3. TURBULENCE KINETIC ENERGY
i, S (e il RE-Ep—
U x oy Tx Ay Tz dy L dy max

3a. NASH
v /7, = (/) /(3U/d)
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CHAPTER 3

NUMERICAL METHOD

A. General Considerations

The numerical method adopted here is similar to that used by Nash
(1968, 1969). Although the general approach and some specific details
are due to Nash, the actual computer program and fine points of the
numerics were developed independently. Very recently Nash (1971)
developed a more sophisticated numerical technique but this has not been
used in the present work. The procedure can best be described as an
explicit forward difference method. Explicit methods are often crit-
icized because they require a large number of steps in the x direc-
tion - in fact it can be demonstrated that explicit methods become
unstable in many problems if the x-step is too long. Implicit methods,
on the other hand, can often take as long a step as is desired, numer-
ical accuracy providing the upper limit on step length. Nevertheless,
the explicit method used seems well suited to the present application
for a number of reasons:

1. The sets of equations formed with two of the proposed shear stress
models being tested (Nash and Bradshaw) are hyperbolic, not para-
bolic as are the laminar boundary layer equations and turbulent
boundary layer equations using an eddy viscosity closure assump-
tion. This means that there exist real characteristic lines and

regions of dependence and independence.
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dy A

» (/ Characteristic Lines

C

In the sketch, the region within the triangle contains flow which
is entirely determined by information on the line AB. This infor-
mation in a finite difference approximation consists of the values
of, and derivatives of, the dependent variables at point P. An
attempt to extrapolate from point P to a point beyond point C
would require information from outside the interval AB. The net
effect is an upper limit on the x-step, dx, which is proportional
to the y-step, dy*. This limited x-step is in fact considerably
shorter than would be required by an implicit method simply for
accuracy and thus an important advantage of the implicit method is

lost.

To use the numerical method described here, it is not necessary to
transform the momentum or shear stress equation from the forms in
which they are normally presented in the literature - only a minor
rearrangement is required. This is particularly useful when, as in
the present study, it is required that several possible equations
be used.

Although a large number of x-steps are required, the computations

at each step are less complicated than in most implicit methods

*
I1f one were to carry computations all the way to the wall the minimum

y-step would be very small and would require an extremely short
x-step. This fact is the main reason the region close to the wall is
passed over with empirical functions.
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and the computation times for complete flows are not increased in
proportion to the number of =x-steps. For example, the present
method requires about ten times as many x-steps as the method used
by Mellor and Herring at the 1968 Stanford Conference (Kline et. al.
1969) but requires only about two to three times the computer time.
Using 20 mesh points in the y-direction and Fortran IV, level G
on an IBM 360/67, the program executes three to four x-steps per |

second. Each step moves a distance of 0.2 to 0.56995.

B. Numerical Procedure (Overview)

Consider Figure 3.1 on which are shown two successive x stations
and their respective grids in the y direction. If the values of all
variables are known at x then it is possible by Taylor's series expan-
sion to extrapolate to x + dx by

oy 2
Ui,x+dx = Ui,x + dx (ax - + 0(dx") (3.1)

U

where the x-component of velocity U is used as an example. (8;)-
i,x

can be obtained from the x-momentum equation (Equation 1.9).

or
&), -l @G vds), Jor

>
Of course, some care is required in evaluating the derivatives on the
right side of equation and expression 3.1 is an approximation valid

only to order dx2 if dx 1is finite. The approximation is improved

i
by first extrapolating to (X + dx/2), evaluating (5; { +dx at
x+22
bd

2
(x + dx/2) and then extrapolating from x to x + dx using

du
= = 3.3
Ui,x+dx Ui,x + dx (ax .o dx (3-3)
1,x+2

56



This approach is considered accurate enough for our purposes. For
example, in early work, Equation 3.1 was used and was found to produce
appreciable errors when %5 was integrated to produce the experimental
free-stream velocity in cases with strong adverse pressure gradients.
These errors were eliminated when equation 3.3 was used.

Fach variable except the normal velocity V can be forward extrap-
olated in this way. The general procedure (Equation 3.3) is used for U
and W in the eddy viscosity and mixing length methods, U, W, and 7
in the Nash method and U, W, Ty and T, in the Bradshaw method. The
appropriate momentum Or shear stress equation is used in each case to
evaluate the x-derivatives as shown by example in Equation (3.2).

V, the normal velocity, need not be extrapolated but can be cal-
culated at the new x station directly. This is done by eliminating

BU/BX between the continuity (Equation 1.8) and x-momentum (Equation

1.9) equation to obtain

or 2.2
v = fz [ <= +—g-x13 ; l—;ﬂ—i/Uz]dy (3.4)
V1 is estimated by the method of Chapter 2 at the first mesh point and
then V at the remaining points is evaluated by a numerical integra-
tion of Equation 3.4 from Yy to the outer mesh point.

The wall shear stress is determined by an iterative process that
leads to satisfaction of the law of wall, Eugation 2.29. This procedure
normally converges in two or three iterations.

The wall shear stress angle, Yy is calculated by a Taylor series
expansion in y about the first mesh point. vy 1is the angle between

the projection of local velocity vector in the plane of the wall and the
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x axis. Thus the wall value of v, Yoo is found by

v, =Y T Y (v () 0.5yft(v3-v2)
(3.5
[(y377) = (¥, /v,y ) 1/10.5(y -y ) ]

Nash (1968) found that an interpolation procedure was necessary at
each x-station in order to damp out irregularities in computed profiles
which led to numerical instabilities. Our procedure uses alternating
meshes at adjacent x-stations. All variables are transferred from one
mesh to the other by interpolation after each forward extrapolation.

The process of interpolation has the added advantage of enabling the vy
mesh step size to be adjusted so that the y-mesh always just fills the

boundary layer, when the number of y mesh points (usually twenty in

our calculation) is fixed.

C. Numerical Procedure (Details)

C.1 Differentiation in y-Direction
Differentiation of all dependent variables except Q, the velocity
magnitude, is accomplished by a three point procedure which fits parab-

olas of the general form

2 (3.6a)

¥ = A + BX + CX
to the tabular profiles. 1In Equation (3.6a) % is the independent

variable (y) and ; is the dependent variable. The coefficients at

a point k are found from

c=lg+ GV /G TV E L F D (3.6b)
B = g - C(Xk_1+xk) (3'6C)
A=y T B DX
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where

= ~ -~ /N _~
E= (VY /(¥ ® ) (3.6d)
The derivative of a dependent variable at the point k is thus
< =B + 2ka (3.7)
k

The velocity magnitude presents greater difficulty. In the inner
regions, because the solution behaves like the law of the wall, it is
close to logarithmic in form. This is not the case in the outer parts
of the layer. Simple, parabolic fitting does not produce accurate
derivatives in the logarithmic region. 1In early stages of the work, a
logarithmic fitting procedure was used in the inner region and parabolic
in the outer region but a suitable, general cross-over point proved dif-
ficult to find. Finally, it was decided to subtract from the velocity
magnitude profile the value which would be computed by Equation 2.27.
The difference, 'a was then differentiated by the parabolic method and

the desired result found from

%8=§+ Z.SQT/y (3.8)

At the first mesh point, Yo a two point rather than a three point
. . N
method was used to differentiate Q.
C.2 Integration in y-Direction
Integration is also performed by fitting parabolas. 1If an integral
from X, to X is desired, the coefficients are found by use of

i-1 i

equation 3.6 and the result is

~

[ 5 Ty = AR )+ % B(§zi-§zi_l)
Tl 1 ~3 3 -9
+ 3 OOy
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C.3 1Interpolation

The grid points are distributed in the y direction so their spac-
ing is small near the wall and larger toward the edge of the layer. The
form chosen to obtain such a spacing is

y; = 8lei/N + (1-9) (1/W T + ¢ (3.10)

where N 1is the number of points in the y direction; 1 1is the point
number (1, 2 etc.); and ¢ takes on a value of either 0.2 or 0.4. The
constant C 1s adjusted so that the first mesh point occurs at a de-
sired value of y+, wusually 30. § 1is an arbitrary multiple of 6995.
The multiple is usually set at 1.6 but values from 1.4 to 2.2 have been
used for various flows. 6/6995 is selected so that the profiles do not
become "clipped" at the outer edge (see section C.l1 in Chapter 2).

At alternate x-stations two different grids computed by Equation
3.10 are used. This is accomplished by alternating ¢ between 0.2 and
0.4. Variables are transferred from one grid to the other by interpola-
tion. Interpolation at each x-station can cause problems. If only a
very small error is made at each step and if it is always in the same
direction, after many steps, the accumulated error can be large. A
parabolic fitting procedure was found to be adequate for all variables
except the velocity magnitude. Four points are used for each fit as
shown in Figure 3.3. The average value of the two fitted parabolas is
accepted as the result.

The velocity magnitude presents much the same problems for interpo-
late as it does for differentiation. It is even more critical to inter-
polate accurately particularly as good performance is required near the

outer edge of the boundary layer so that 5995 can be determined with
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precision. A number of things were tried but ultimately the two-
dimensional law of the wall-wake was found to work very well. The two-
dimensional law of the wall-wake (Coles 1956) is assumed to approximate
the velocity magnitude, i.e.
Q = QT[2.5 iny QT/v + 5

+ 2.5I(1 - cos(my/8)] y <& (3.1la)

y >4 (3.11b)
where the wake function is approximated by a cosine form. 1In this
application § was taken as § . II was then evaluated so that Equa-

995
tion 3.11 matched the known value of Q _ at y = & . The value of Q

995

computed by Equation 3.11 was then subtracted from the tabular Q pro-
file. Parabolic interpolation was performed on the difference between
the tabular profile and the result of Equation (3.11) and a value com-
puted by Equation 3.11 added to obtain the final result.
C.4 Length of x-Step

As mentioned previously, the Nash and Bradshaw methods result in
hyperbolic equation sets. If too large an x-step is taken, the methods
become unstable and diverge very rapidly. Setting the x-step as a

simple fixed fraction of § was tried but instability resulted in

995
some cases. It was reasoned that although the method of characteris-
tics is not being used explicitly, the same stability criterion should
be applicable to the present approach to the problem. Regions of depen-
dence and independence will be the same. Thus it was decided to use the

criterion for the step length used by Bradshaw (1967).

dx = (dy/tan @) .o (3.12)
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where o 1is the angle of the characteristic lines. From Bradshaw
(1967) the characteristic angles are computed from
a =V + aGTrlné}z( + (azGZTmax + ZaT)l/z/U (3.13)

No problems with instability were encountered when this approach was
used. This criterion is also used for the eddy viscosity and mixing
length calculations, although not needed, in order to maintain approx-
imately the same =x-step and thus eliminate possible differences in
accuracy of the respective results due to x-step differences.
C.5 1Integral Parameters

In order to compare data to computed results all the integral
parameters defined in Chapter 1 are calculated at each x-station where
printout is required. The integration procedure of section C.2 is used
for this purpose. The portion of the integrals between the wall and the
first mesh point are evaluated in much the same way as the normal veloc-
ity V 1is calculated - by assuming that Equation 2.35 is valid to
y+ = 11 and Equation 2.27 from y+ = 11 to the first point. For this
calculation the flow is assumed collateral in this region.
C.6 Starting Profiles

In order to start calculations, it is necessary to have profiles of
U and W at the first x-station. The Nash and Bradshaw methods also
require starting shear stress profiles. It is possible to input these
profiles or to generate them from integral parameters given at the
starting value of x. The streamwise velocity profile is generated here

by using Equation 3.11 with US substituted for Q and the streamwise

component of the shear stress used for QT

U = QTJCOSBW (3.14)

TS
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UTS, and I are evaluated by inputing values of H, 911 and Q_ at

the start. The following equations (Coles 1956)

Q, . 8
o _ 1 TS 21
== =50 4 5 (3.15a)
TS
(6.-98,)
K ——LL _ 1 4@ (3.15b)
5U
TS
2
4,750 & 2
2% — == 1.+ 16T+ 0.76l1 (3.15¢)
TS

are solved simultaneously by an iterative scheme for UTS and Il. The
crossflow velocity profile is then generated by the triangular polar
profile of Johnston (1957) (Equation 1.21) with given taan and A as

input to the program.

D. Verification of the Computer Program

When results of a three-dimensional turbulent boundary prediction
method layer are compared with data, discrepancies will be noted which
are due to three distinct causes - (i) numerical errors or inaccuracies,
(ii) inadequacies of the physical equations and (iii) errors or inaccura-
cies of the experimental data. The objective of the present research
program is to examine the merits of the physical equations and it is
thus desirable to minimize (i) and (iii) above. Unfortunately, nothing
can be done about item (iii) directly but it is hoped that the influence
of experimental errors on the general conclusions will be minimized by
making comparisons to several sets of experimental data. To verify that
numerical errors, (i), were not significant, comparisons of the results
calculated by the present computer program have been made to the com-

puted results of other workers. In addition internal momentum integral

checks were made on the computations.
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D.1 Momentum Integral Checks

Although we are solving the differential equations of motion
(Equations 1.9 and 1.10) by finite differences in the y direction, the
computed results should satisfy the momentum integral equations which
consist of integrating Equations 1.9 and 1.10 with respect to y
(using Equation 1.8 also). In the x direction, the momentum integral

equation has the form

o) 2 2 2
— [Q{ -c%8,, - 2cs8,. + S8, +CS6.}]
Ox oo 11 21 22 2 (3.16a)

12,2 2 2 2 2
+ 7 [o fs™-c )874C88,; + (57-C)6,, + CS8, + S 52}]

3Q,C

™ [CQmél + sqmézj

2
O'SQme cosy

where

C cos § = cos Yo (3.16b)

S

sin ¢ sin Yoo (3.16¢)
In the present computer program, the left (LHS) and right (RHS) hand
sides of this equation have been integrated by the trapezoidal rule from
the start of the computations to each value of x. If the computations

had no numerical errors, the integrated left and right hand sides should

. , + . . ;
be identical. Momentum integral unbalance is defined as

X X
[ LHSdx - [ RHSdx
Unbalance (%) = —> - 9 x 100 (3.17)
[ RHSdx
(o]

In most of the flows studied in the present study, the momentum inte-

gral unbalance has been kept under 10%. The exceptions are the adverse

+'The effect of a poor shear stress closure model would not be reflected
in this test.
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pressure gradient flows at low Reynolds numbers (the vaneless diffuser
flows) where due to the large distance between the wall and the first

mesh point (order of 0.1% ) the empirical functions are put to a

995
severe test. Unbalance for the separating vaneless diffuser flows of
up to 100% have been observed. This is not as bad as it may appear
however and can be clarified by examining the simpler form of Equation

3.16, the momentum integral equation for two dimensions.

de (2611+61) dQ_, _ Cf

11
dx + Q dx 2 (3.18)

oC

In an adverse pressure gradient, the first term on the left side of
Equation 3.18, is always positive whereas the second on the left hand
side is negative. The momentum unbalance is based on an error in the
difference of these two terms. In many of the vaneless diffuser flows,
this difference is only about 5% of the magnitude of either term and
thus a 5% error in one term would cause a 100% momentum integral unbal-
ance. The momentum integral check, when applied in the form of Equation
(3.16) is thus a very sensitive test. 1In the moderate Reynolds number
flows, the 10% maximum unbalance indicates good performance of the
numerical scheme. While better numerical schemes might produce even
smaller momentum integral unbalances, it is doubtful if the improvement
would show in comparisons to the data. Momentum integral balance checks
are not, however, sufficient to verify the adequacy of the computing
scheme. The possibility of compensating errors is not eliminated.

Thus, it is desirable to compare predictions to those made with other

numerical schemes using the same physics.
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D.2 Comparisons to Other Predictors

In Figure 3.3, predictions using the eddy viscosity model are com-
pared to the predictions of Mellor from the 1968 Stanford conference for
the Ludwieg and Tillman strong adverse pressure gradient flow (flow
1200) . As can be seen, the agreement between the predicted results is
good. Both predictions show poor agreement with the data because
neither allowed for the streamwise convergence of the flow, which was
substantial in this experiment. Also shown in Figure 3.3 are the re-
sults of Cebeci from the 1968 conference for the same flow. His results
are slightly different but not significantly so. Cebeci uses a slightly
different model for the eddy viscosity but the differences are probably
mostly numerical.

The predictions of the present method shown in Figure 3.3 were
calculated using 20 mesh points. When calculated using 30 mesh points,
no appreciable change in results was seen (e.g. Re only changed from
24,010 to 23,851 at x = 3.5 feet).

The present method uses a more than adequate number of x steps
for good accuracy. The large number of x-steps is a requirement of
Equation 3.12. Further reduction in the x-step can produce a deterio-
ration in the computed results. In the above Ludwieg and Tillman flow,
halving the x-step with 20 y points increased the average momentum
integral unbalance from 3% to over 20%. This effect is primarily due to
increased errors due to interpolation.

Figure 3.4 presents results of the Nash method calculations com-
pared to the results of Nash himself (1969) for the Cumpsty and Head

Infinite swept wing flow. The velocity profile shown is for the largest
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value of x. The agreement between predictions is quite good and the
differences which are apparent are probably the result of different
interpretations of the external pressure gradient. Most attempts by
predictors show poor agreement with the data for this flow; the cause
is not known,

In the present work, all prediction methods use essentially the
same numerical method and it is thus expected that while comparisons
of predictions to data will show some effects of numerical inaccura-
cies, comparisons of methods to each other should be more accurate.
However, the results shown by Figures 3.4 and 3.5 indicate that numer-

ical errors should be small in most cases.
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CHAPTER 4

COMPARISONS WITH EXPERIMENT

A. General Considerations

The worth of any prediction scheme for turbulent boundary layers
can be fully assessed only when it has been compared with a wide variety
of experimental data. Although the selection of good three-dimensional
turbulent boundary layer data is not extensive, some good data do exist
(see Chapter 1). 1In this chapter, predictions have been attempted for
ten experimental flows using three prediction methods (Nash, Bradshaw
and eddy viscosity). 1In addition, a fourth method, the mixing length
method, has been tried on some flows.

The experimental flows fall into three general geometric classes:+
(i) plane of symmetry flows at the plane of symmetry of wing-body junc-
tions, (ii) infinite swept wing flows, and (iii) radial vaneless dif-
fuser flows. Each of these flows requires the use of only two indepen-
dent space variables. Hence, to the limit that the data satisfy this
assumption, the entire boundary layer flow field is calculated for the
infinite wing and vaneless diffuser flows. On the other hand, in the
plane of symmetry flows, only the flow at the plane of symmetry is cal-
culated. For general information about each experiment which is dis-
cussed, the reader should consult Table 1.1.

In this chapter, a convention has been used for the curves repre-
senting the predictions of the various methods. Except as noted, this

convention is:

+A fourth class of flows, the flow on a rotating disc was not success-
fully predicted. The attempt to compute this class of flows is dis-

cussed in Appendix C.
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Bradshaw method

- - = -~ - - - - Eddy viscosity method

Nash method

== Mixing length

- Eddy viscosity with low
Reynolds number correction

(discussed later).

B. The Flow at a Plane of Symmetry

Plane of symmetry flows fall into the general class of three-
dimensional flows which can be predicted using only two independent
space variables as discussed in Chapter 1. On the symmetry plane, how-
ever, three-dimensionality enters not as a crossflow but as a gradient
of the crossflow in the direction perpendicular to the symmetry plane.
Thus, the crossflow velocity W 1is zero while gg is non-zero. Rather
simple modifications of the equations presented in Chapter 1 are thus
required to predict the flow on the plane of symmetry. Since 3z is

non-zero, the continuity equation (Equation 1.3) takes the general form:

dU , oV . oW
x T Ay T3z 0

(4.1

rather than the restricted form (Equation 1.8) used for all the other
predictions in this report. Since W is zero, the x-momentum equation
(Equation 1.4) reduces to Equation 1.9 as for the infinite swept wing,
but Equation 1.5 becomes a 0 = 0 identity. However, the appearance of
éﬂ in Equation 4.1 requires a new equation which can be obtained by

Az

differentiating z-momentum, Equation 1.5, with respect to z and

U M .
noting that symmetry requires that =35, "5 " 0. The resulting

equation is:
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By assuming that the free stream is irrotational

U awoo
% & (4.3)
then in the free stream
azuw 3 (Mo
U S;E— =0 S\ (4.4)

The right hand side of Equation 4.4, which can be obtained from the

data more readily than the left hand side, is used to evaluate the term

aU
Um( 5 which appears in Equation 4.2.

z

or

. . . z
Equation 4.2 introduces another stress variable 5. In the

models which use the isotropic eddy viscosity assumption to compute the
672
shear stress direction, §, can be obtained by differentiating Equa-

tion 2.18 with respect to 2z to obtain the following expression:

a'TZ
S =T, ay G )/( (4.5)

or
In the Bradshaw method, 522 can be obtained by differentiating Equa-

tion 2.20 with respect to 2z to obtain
o (Ze) Lo (Te) o fo(a). 2 T
dx \ 3z, oy\odz /= " oy\oz L Oz
(4.6)
RN A
Tmax dy dz

Thus, with a few minor changes, a set of equations is obtained which are

or
Z

similar to those of the infinite swept wing except that S and Y

are used as dependent variables instead of W and T,
B.1 Johnston Plane of Symmetry
The geometry of this flow is sketched in Figure 4.1. Johnston

(1957, 1960b) measured mean velocity profiles at many points all along the
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plane of symmetry from x =0 to x = 2.5 feet (see Figure 4.1) and at
points off the symmetry plane from x = 2 tox = 2.5 feet. Examina-
tion of Equations 4.2 and 4.4 shows that (dw/az)OO is needed in order
to make predictions. Since Johnston did not measure velocities off the
plane of symmetry for x less than 2.0 feet, (aw/éz)OO had to be
obtained indirectly. This was dome by assuming that %% was zero on
the centerline of the flow so the continuity equation yields

MW au_

(e o]

% T @7

This result cannot be justified directly from the data but the results
so obtained fair in smoothly with the direct measurements at X = 2.0
feet (Figure 4.2).

The calculated results of integral parameters are shown in Figure

4.3. H 1is the two-dimensional shape factor

61
H = 5 (4.8)
11
Cf is the normalized wall shear stress
1 2
Ce=7,/5°Q, (4.9)
and Re is the momentum Reynolds number
Ry = Q. 8,,/V (4.10)
8,
=, the remaining parameter shown in Figure 4.3 is defined as
8 5
12 _ 1 LM
= =5 [l 0 Flby (4.11)
Q, ©
B,
3 is the only cross flow term appearing in the momentum integral
z
equation on the plane of symmetry (see Johnston 1960b):
30 ) c
11 1 o0 12 f
— S =+ = =5 .1
S (28T o YT T2 (4-12)
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With the exception of the last data point, the agreement between the
predictions and the data is good for all methods. The Nash and Brad-
shaw results are indistinguishable. Unfortunately, the freestream
pressure gradient is uncertain at the last data point due to a dis-
crepancy between tabulated and graphical results in Johnston's report.

A major factor which causes the results to be essentially the same
is the short length of the flow (about ten times the upstream boundary
layer thickness) and the strong adverse pressure gradient which causes
the pressure terms to dominate the shear stress terms in the momentum
equations. For example, at x = 2.33, the shear stress gradient is
only about 25% of the right hand side of the x-momentum equation
(Equation 1.4). Thus only a weak dependence of the predictions on the
shear stress model is expected for this flow.
B.2 East and Hoxey Plane of Symmetry

The geometry of this flow (East and Hoxey 1969) closely resembles
a real wing-body junction as shown in Figure 1.2 (a). Since mean ve-
locity profiles were measured at many locations both on and off the
plane of symmetry, we computed (gg directly from the data. Indirect

o

wall shear stress measurements were made by East and Hoxey using a
Preston tube and a related technique using a razor blade to supplement
their mean profile data.

The results of integral parameters, shown in Figure 4.4, are in
good agreement with the data except for C_. which appears to be under-

f

predicted by all methods. This discrepancy in Cf may result from the
use of the Townsend form of the law of the wall (Equation 2.29) in the

prediction methods whereas the data points shown in Figure 4.4 were
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obtained from the experimental velocity profiles using a fit to the

conventional law of the wall, Equation 2.27. The Townsend form yields
a lower Tw when g% is high in the wall region. 1In fact, when the
flow was recomputed, using the Nash method, with the conventional law

of the wall, the computed C_ was in much better agreement with the

f

"law of the wall" data and the Preston tube estimates.

These difficulties with the data for Cf are further emphasized

if one considers flow separation, which is singular ('rw = (0) at the
plane of symmetry. The evidence indicates that the flow separates at
about x = 0.666. At x = 0.666, Cf by the razor blade technique 1is
zero, the inner part of the measured velocity shows no forward velocity
and an examination of the oil flow photograph shows separation close to
this value of x. The predictions (using Equation 2.29) also show sep-
aration at about this value of x. However the Preston tube estimate
of Cf is non-zero at x = 0.666 and if one were to extrapolate Cf

determined from the conventional law of the wall (Equation 2.27) to

x = 0.666 it appears that Cf would be greater than zero.+ The

Q
r— Preston tube
First three data points T’
show zero forward 0.0 inches
velocity l

T77777 7077777777

+In fact, an examination of Equation 2.27 indicates that it cannot pre-
dict a zero wall shear stress unless the velocity at the first mesh

point is zero whereas with a high BT/éy, Equation 2.29 can predi?t
zero wall shear stress with a finite velocity at the first mesh point.
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Preston tube however does not give a very reliable indication of the
wall shear stress since it responds to the flow some distance from the
wall.

The conclusion reached is that the predictions using the Townsend
form of the law of the wall (Equation 2.29) are mor: reliable than the
data points based on the conventional law of the wall (Equation 2.27)
or the Preston tube measurements.

This adverse pressure gradient flow develops even more rapidly
than the Johnston flow (x = 0 to separation in approximately 1.06995).
Again the choice of stress model is not critical so all the prediction
methods produce nearly identical results. A noticeable but small dif-
ference between methods is seen in the shape factor, H, results. The
eddy viscosity method gives a somewhat lower H near the end of the
flow (Figure 4.4). This effect appears to be a consequence of the
higher shear stress which this method predicts (Figure 4.5). The Nash
and Bradshaw methods give lower shear stress values because the shear
stress lags the equilibrium value due to the rapid flow development. The
higher shear stress of the eddy viscosity model prevents the fluid
layers near to the wall from decelerating as much as the Nash and Brad-

shawmodels and produces as a result a '"squarer" velocity profile

(lower H).

C. Infinite Swept Wing Flows

Infinite swept wing flows are described in cartesian coordinates
where x 1is measured along a chord and gradients in the =z, or span-

wise, direction are zero. Since there is no spanwise pressure gradient,
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W, the component of free stream velocity parallel to the leading edge*

is everywhere constant. These flows are computed using Equations 1.8,
1.9 and 1.10 and the various shear stress model equations presented in
Chapter 2.
C.1 Johnston Infinite Step

Johnston (1970) took some rather detailed measurements on the geom-
etry shown in Figure 4.6. The measurements were made on the floor of
the wind tunnel immediately upstream of a long, forward-facing step
oriented 45 degrees to the tunnel centerline. The step produces an
extremely abrupt change in the flow field and in fact, the streamlines
are curved in the y direction so that the usual boundary layer approx-
imation of OP/dy = 0 is not valid. Fortunately, Johnston measured the
y profiles of static pressure in the flow at various values of x (Figure
4.7). Thus, in this special case, the prediction methods were modified
to take advantage of this additional data and dP/éx replaced dP/dx
in the x-momentum equation (Equation 1.9). OP/dx calculated from the
data in Figure 4.7 was supplied as input to the prediction methods as a
function of x and y. Since Johnston measured turbulent shear
stresses as well as mean velocity profiles, an experimental shear stress
profile is used as well as an experimental velocity profile to start the
calculations for this flow.

The results of integral parameters for this flow are presented in
Figure 4.8. The parameters not used in the discussion of the plane of
8

6

symmetry flows, 8 and Bw are defined in Chapter 1. The

127 722’ "2

*
In practice infinite swept wing flow need not be over an airfoil hence
the use of the terminology of airfoil flow is purely illustrative.
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results of all the methods are almost the same and they agree quite well
with the data. Figure 4.9 shows the mean velocity profiles at x = 0.75
feet. No differences are apparent between the methods and the agreement
with the profile data is good. Johnston measured the pitch of the flow
so that experimental data is also available for the normal velocity V.
Predictions of this variable at x = 0.75 shown in Figure 4.10 are not
as good as the wall-parallel velocities. V depends entirely on the
accuracy of the local calculation of dU/ax since it can be evaluated
from continuity (Equation 1.8) by V = fz (gg)dy. Thus, the results for
V indicate that the calculations are starting to deteriorate at x =
0.75. This may in part result from rapid change of pressure gradient in
a region, see Figure 4.7, where it is not accurately known.

The predicted and experimental shear stress profiles shown in Fig-
ure 4.11 for x = 0.75 are quite striking. The Nash and the Bradshaw
methods agree well with the data but the eddy viscosity model gives
shear stresses which are too high. This discrepancy is a consequence of
the lack of shear stress rate equation in the eddy viscosity model. 1In
the Johnston step flow, the turbulence field does not have time to de-
velop to an equilibrium state and therefore the equilibrium stresses
computed using an eddy viscosity method are too high. This high shear
stress of the eddy viscosity model has another significant effect - it
reduced the skewing of the flow so that separation (which is predicted
by Nash and Bradshaw methods to occur at x = 0.89 feet) never occurs.
The Nash and the Bradshaw methods predict a separation point in the

location where Johnston observed it experimentally.
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Another result of interest is the direction of the shear stress,
since assumptions concerning this direction constitute the difference
between the Nash and the Bradshaw methods. As can be seen in Figure
4.12, the Nash shear stress is approximately aligned with the mean ve-
locity gradient direction from the data and the Bradshaw shear stress
direction is closer to the shear stress data direction.+ However, the
Bradshaw method does not correctly predict the shear stress direction
but appears to be at best only an improvement over the Nash method. 1t
should be emphasized that the Nash and Bradshaw methods produce virtu-
ally identical results for the mean velocities. This experiment was
especially designed to emphasize the difference between the direction
of the shear stress and the mean velocity gradient and since the dif-
ference in assumptions between the Nash and Bradshaw method makes no
difference in prediction of the mean flow it may well be that the iso-
tropic eddy viscosity assumption for shear stress direction, while not
generally valid, is quite adequate for many practical calculations.
C.2 Bradshaw and Terrell Swept Plate

The Bradshaw and Terrell flow (Bradshaw and Terrell 1969) is a
zero pressure gradient flow on a flat plate which is attached to the
trailing edge of an infinite swept wing. The fluid was air at atmo-
spheric pressure and temperature flowing at about 130 ft/sec. The flow
relaxes from a modestly skewed form (Bw = 8% at x =0) toward a

simple, two-dimensional flat plate form. Shear stress profiles were

+The measurements of shear stress direction were quite difficult and
are recognized to be of relatively high uncertainty, e.g. the bars on
the points represent a significant fixed error. However, in the re-
gion close to y = 0.5" the uncertainty is not believed to exceed 2

degrees.
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taken in addition to mean velocity profiles at each measuring station.
Experimental shear stress and velocity profiles were used at x = 0 to
start the computations.

The results of integral parameters are shown in Figure 4.13. The
data shows scatter which is caused by the test arrangement where pro-
files were taken at various spanwise, =z, positions. There was a
small variation of the flow conditions along the span. The points shown
byC:{ are directly downstream from the first point and do show somewhat
less scatter. The general agreement between predictions and data is
good (note that most of the plotting scales are quite expanded). 1In
both streamwise and crossflow parameters the differences between the
various methods appear to be no larger than the scatter of the data.

Figure 4.14 shows the mean velocity profiles at x = 1.18 feet.
Moderate differences are apparent in the crossflow velocity profile
predictions. However, considering the effect of a 0.5 degree measure-
ment error of the velocity direction on the data (see Figure 4.14), it
would be difficult to say which method produces best agreement to the
data.

Figure 4.15 shows the computed and experimental shear stress pro-
files at x = 1.18 feet. The agreement is not as good as expected.

In fact, when the eddy viscosity model was used to calculate a shear
stress from the experimental mean velocity profile at the x = 1.18
station, it produces values of TS/Qi of 0.00095 and 0.00048 at y =
0.0416 and 0.08333 feet respectively compared to experimental values
of .00155 at y = 0.0416 and 0.00078 at y = 0.08333. These results

raise questions concerning the accuracy of these stress data. If the
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data are later demonstrated to be + 10% uncertain, then a re-examination
of all shear stress models for two-dimensional flow is warranted.

In Figure 4.16 are plotted the shear stress and mean velocity di-
rections for this flow at x = 1.18. The data does show a difference
between the directions of the shear stress and mean velocity gradient
and this trend is also seen in profiles at other values of x. In the
inner parts of the layer, this difference is small but becomes apprecia-
ble near the edge of the boundary layer. Near the layer edge however,
the mean velocity gradients and shear stresses are small and hence the
predicted and experiment directions have a high uncertainty. The Nash
and eddy viscosity methods predict shear stresses in the direction of
the mean velocity gradient (by assumption) and are in acceptable agree-
ment with the experimental velocity gradient direction. The Bradshaw
method shear stress and mean velocity gradient directions are different
from each other but in the inner part of the layer the trend is reversed
from the data. For y greater than 0.073 feet, the data and predic-
tions show the same trends; however, the shear stresses are becoming
small and of little importance in the ultimate prediction of mean veloc-
ity profiles.

In summary, it appears that all the shear stress assumptions in-
cluding the eddy viscosity method tried on this flow produced results
which agree quite well with the mean velocity data.

C.3 Cumpsty and Head Infinite Swept Wing

Cumpsty and Head (1970) measured the development of the boundary

layer in the adverse pressure gradient on the rear of a wing with a

sweep angle of 61.0 degrees (see Figure 1.2(b)). Free stream velocity
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in the atmospheric temperature and pressure air flow was 133 ft/sec.
The experimenters experienced difficulty with flow interference effects
from their first traverse gear which caused the separation point to
move about but they finally minimized the problem by use of a slender
traverse gear. It is the latter data (slendergear) that is used here.
Only mean velocity profiles were measured in this flow.

The predicted results of integral parameters, shown in Figure
4.17, are in poor agreement with the data. The predictions of Cumpsty
and Head (1970), who used an integral method, and Bradshaw (1969),
whose basic method is the same as ours but whose numerical method was
quite different are also in poor agreement with each other and the
data. As mentioned in Chapter 3, Nash also got poor agreement when he
calculated this flow. The Cumpsty and Head and Bradshaw's own results
for Bw- are also shown in Figure 4.17. Nash does not present results
for Bw but it is estimated from the velocity profile that his com-
putations gave values no more than 10% higher than the present work.
Thus, it appears either that the data is questionable or in some way
fails to meet the assumptions. The fact that the Cumpsty and Head
calculations do not agree with the present calculations is not surpris-
ing since he used a significantly different prediction method (an
integral method). That the Bradshaw's own results do not agree with
the present results is puzzling. It is surmized that he may have com-
puted the pressure gradient differently, and as is pointed out later
in discussion of the Gardow (1958) flows, accurate input for dP/dx
is essential in adverse pressure gradient cases.

In order to improve the predictions, the various authors have

tried different things. Bradshaw obtained improvement by assuming a
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surface curvature correction for the shear stress. Cumpsty and Head
modified the external velocity angle at the start and obtained an im-
provement. Nash, who has a program which allows variations in the z
direction improved his predictions by assuming a spanwise pressure
gradient. It is felt that the data from this flow is not complete
enough to adequately determine the difficulty and it is not felt that
corrections are really of much merit. What is demonstrated by this
flow is the need for a better infinite swept wing experiment. The
sweep angle selected (61°) is very high (it was governed by an avail-
able apparatus) and it is suggested that an experiment be performed
in the future on a wing with a sweep angle of about 45 degrees so that

the assumption of "infinite" span can be better approximated.

D. Vaneless Diffuser Flows

Two sets of three-dimensional turbulent boundary layer data were
obtained on a radial vaneless diffuser rig (see Figure 1.2d) in the
late 1950's. One of these was by Gardow (1958) and the other by Jansen
(1959) . Gardow ran seven flows and took measurements on one wall of
the diffuser. Jansen ran three flows but took measurements on both
walls. Both authors measured only mean velocity profiles. 1In the
present work, calculations are presented for four of the Gardow flows
and one of the Jansen flows. In both cases the test fluid was air at
atmospheric temperature and pressure and the inlet free stream velocity
levels low (30 - 55 feet/sec).

Unfortunately, all of the vaneless diffuser flows were run at low
momentum thickness Reynolds numbers (Re) and most of the useful data

has Re under 2000. This fact complicates the numerical method and
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also extends the shear stress assumptions into a Reynolds number regime
for which they were not originally developed.

The numerical difficulty arises because of the restriction that the
first mesh point occur at a y+ = 30. At an Re of 1000, such a value
of y+ occurs at a y/é995 of about 0.1, which is quite far from the
wall. This means that the empirical functions for T’ Bw and V1 are
put to a severe test. In addition, since the second mesh point is much
closer to the first mesh point than the first mesh point is to the wall,
numerical instabilities appear. In his two-dimensional method, Bradshaw
doesn't use the restriction that the first mesh point fall in what is
experimentally observed to be the log-law region. Hence if y+ at the
first mesh point is less than 30, an artificially high velocity is com-
puted. Since the first mesh point is used to compute the wall shear
stress and the differential equations give a logarithmic solution in the
inner layer (all the way to the wall if allowed), the value of the wall
shear stress extracted from the computed log-law is the same. However,
it is not clear that an artificially high velocity value near the wall
will have no effect in a three-dimensional boundary layer. The higher
apparent inertia of the fluid may cause it to resist skewing and cause
errors in the estimation of the wall shear stress angle (see Chapter 2).
Thus, it was elected to always require that y+ = 30 at the first mesh
point and bear the resultant inaccuracies. It is possible that
allowing the first mesh point to be closer to the wall as was done in

the two-dimensional Bradshaw method would not have produced any greater

inaccuracies.
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The second problem at low Reynolds numbers, extension of the theory
to an untested regime, is well known to the originators of the various
shear stress models. In his paper for the 1968 Stanford conference,
Bradshaw notes that his method does not include the viscous shear
stresses which may be as high as 10% of the total shear stress at an
Re = 500. He notes that simply adding this effect into the calculations
is not necessarily meaningful because the empirical functions (L etc.)
may also change. Herring and Mellor (1968) also make note of the low
Reynolds number problem and suggest a correction to their eddy viscosity
model. They suggest that the outer eddy viscosity be modified from the

usual form Equation 2.9b (& = 0.01661Qa) to

outer
1100\
€ yrep = 0-016 éle[l +<—§:—)] (4.13a)
"1
where
R, = Q.0 /v (4.13b)

1

In the present work, all of the vaneless diffuser flows have been com-
puted using the eddy viscosity model with and without this low Reynolds
number correction. For brevity, these methods have been denoted EVLR
and EV respectively.

Since the available vaneless diffuser flows indicated a significant
difference between results from the Bradshaw and the EV predictions
(Nash is very similar to Bradshaw) it was considered to be of interest
here to try the mixing length model also. It was found that the mixing
length model produced essentially the same results as the eddy viscosity
model for the infinite wing flows of Bradshaw and Terrell and Cumpsty
and Head. 1In fact, the outer mixing length was adjusted for best
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agreement (4/8 = 0.79) 1in these cases.

995

The data for the vaneless diffuser flows appears to be of appre-
ciably lower quality than the other experimental flows discussed so far.
Figure 4.18 shows a typical velocity profile by Gardow which shows the
scatter of the data points to be substantial. The difficulty is prob-
ably caused by the low velocity levels used in the vaneless diffuser
experiments. In none of the flows presented in his report does the
free stream velocity exceed 55 feet per second and the average velocity
level is closer to 35 feet per second. Such low velocities produced
low total to static pressure differences (0.2 - 0.4 inches of water
column) and high uncertainties in the resulting measured velocities,
The scatter in the velocity profiles led to concern about the accuracy
of the pressure gradient data. Minor errors in the measurement of the
pressure gradient were thought to have a major effect on the predic-
tions. As a result, a set of runs on each of the vaneless diffuser
flows was taken with the best estimate of the local pressure gradient
uniformly increased by 5% and uniformly decreased by 5% at each value
of x. The results of this study are presented after the presentation
of the predictions using our best estimate of the experimental pressure
gradient.

The Bradshaw and the Nash methods require that a starting shear
stress profile be supplied. 1In all of the calculations for the vane-

+
less diffusers, the mixing length (see Chapter 2) has been used to

+The mixing length used for starting shear stress profiles has been
rounded slightly in the region where the two straight line portion of
the 2(y) function intersect. This procedure eliminates a slight
spike in the starting shear stress profile.
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generate a starting profile from the starting velocity profile. Since
it is possible that the selection of a starting shear stress could
appreciably alter the calculations, a set of calculations were done
with the starting shear stress profiles arbitrarily altered by plus or
by minus 10% at all values of y.

The vaneless diffuser flows are denoted by the authors name and a
number which is the free stream swirl angle (wi) at the inlet to the
diffuser (see Figure 1.2(d)).

D.1 Gardow A-45.2 Vaneless Diffuser Flow

The predictions of integral parameters for this flow are presented
in Figure 4.19. At the last two values of x for which data is given,
the experimental boundary layer thicknesses are 0.991 and 1.008 inches -
values large compared to a passage half width of 1.000 inches. Assuming
that the unmeasured boundary layer on the other diffuser wall is about
the same thickness, the inviscid core of the flow had disappeared. If
this is the case, the predictions at these last two points should not be
compared to the data.

The prediction methods produce a wide range of results in Figure
4.19 which completely span the range of data points. Rather surpris-
ingly, the mixing length model predicts this flow very well. The Nash
and Bradshaw methods give identical results as in previous cases.

The Nash, Bradshaw, and eddy viscosity methods all tend to over-
predict the crossflow. 1If one were to believe the data, this excessive
crossflow would indicate that these methods are predicting an average
shear stress across the layer which is too low. A low shear stress de-

creases the resistance to skewing. Mellor, in his correction for the
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low Reynolds numbers (Equation 4.13) increases the outer eddy viscosity
when his method is used at low Reynolds numbers. It is difficult to
demonstrate precisely how the different shear models modify the flow
since as the computations proceed, the mean velocity profiles tend to
adjust so that the shear stress profiles for all methods are much the
same., This is demonstrated by Figure 4.20 which shows the shear stress
profiles at the start of the flow (x = 0.18 ft) and downstream at x =
0.36 ft. Note particularly that the immense difference between the EV
and EVLR shear profiles at x = 0.18 ft has almost completely disap-
peared at x = 0.36 ft. Of course, as Figure 4.19 shows, to achieve
this similarity of shear stress profiles, the velocity profiles have
different shapes as evidenced by the different values of H, the
streamwise shape factor. The important point is that the strong inter-
action between the mean flow and the shear stress makes it difficult to
pinpoint which characteristics of the shear stress models are respon-
sible for the differences in mean flow predictions.

A superficial evaluation of the predictions for this flow indicated
that the mixing length model does best, followed by the EV, EVLR and
Nash-Bradshaw results. The discussion in the paragraph above illus-
trates some of the difficulties of proceeding beyond this level of
evaluation.

D.2 Gardow B-50.6 Vaneless Diffuser Flow

In this flow, the Nash, Bradshaw and EV methods indicate ordinary
separation well upstream of the last x station. The mixing length
and EVLR methods provide greater resistance to skewing and predict

unseparated flow for the entire diffuser. The data show no evidence
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of separation anywhere. As in the Gardow A-45.2 flow, the boundary
layer appears to fill the passage at the last two data points and thus
comparisons to data should not be made in this region. In general, it
appears that the mixing length and EVLR methods both predict the flow
well. However, these predictions are very sensitive to the pressure
gradient as will be shown later.

The oscillations of Cf and Bw near the start of the computa-
tions with the Nash and Bradshaw methods are a consequence of a numer-
ical instability in the wall region which results from an incompatibil-
ity of the initial conditions. In all the vaneless diffuser flows, the
irregular experimental velocity profiles (Figure 4.18) required us to
use synthetic starting velocity profiles. These synthetic profiles
were evidently somewhat different from those which the computational
methods required. With the shear lag of the Nash and Bradshaw methods,
the adjustment was somewhat unstable. The instability disappears how-
ever and is not thought to be significant in the prediction of the
downstream growth of the boundary layer. The eddy viscosity and mixing
length models, which do not use a rate equation for the shear stress,
remain stable.

D.3 Gardow B52.1 Vaneless Diffuser Flow

The results of integral parameter for this flow are shown in
Figure 4.22. The mixing length results are not shown but are very
similar to the EV results. As in the Gardow B50.6 flow, the Nash,
Bradshaw and EV methods all predict ordinary separation. Again, the

data does not indicate separation. However, the data comes close to

separation (Bw + ¢ = 82°) and it may be that experimental errors mask
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actual separation. The boundary layer appears to fill the passage for
the last two data points. The EVLR method predictions compare well to
the valid data points. 1If experimental separation does in fact occur,
then the Nash, Bradshaw and EV methods also perform fairly well since
they do not deviate drastically from the valid data.
D.4 Gardow B-54.5 Vaneless Diffuser Flow

The results of integral parameters for this flow, shown in Figure
4.23 indicate that all methods predict separation very near to x =
0.3 ft, close to the start of computation. The experimental results
show a long region in which Bw + ¢ 1is very close to 90 degrees and it
is probable that the experimental flow is actually separated. The mix-
ing length results are not shown, but are virtually the same as the EV
results. The experimental boundary layer appears to fill the passage
for the last three values of x.
D.5 Jansen 47 Degree Vaneless Diffuser Flow

The results of the Jansen 47 degree flow are presented in Figure
4.24. Jansen did not present any tabulations of his data, only tracings
of his original plots which were then multilithed into a report. Thus,
there may be a considerable loss of accuracy from the original results
to the results shown in Figure 4.24. The Nash and Bradshaw method pre-
diction, which are virtually the same, agree quite well with all the
data except shape factor H. The EVLR method agrees even better with
the streamwise data but leads to serious underestimation of the cross-
flow parameters. The EV method gives somewhat poorer agreement with the
data than the Nash and Bradshaw methods; it overestimates R, and under-

S

estimates Cf. Considering the questionable quality of the data, it is

surprising that any of the methods agree well with the data.
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D.6 Variable Pressure Gradient Effects

It was suspected that the predicted results for the various methods
are very sensitive to the free stream pressure gradient. Therefore a
series of calculations on the vaneless diffuser flows were carried out
in which the pressure gradient was deliberately varied from the best
estimate. The pressure gradient was varied according to

dp _ dp

= a
dx dx best
estimate

where a was taken as 1.05 for the 5% high pressure gradient calcula-
tion and 0.95 for the 5% ;ow pressure gradient calculations. The re-
sults of these changes of dP/dx on the computed free stream velocity,
for the Gardow A-45.2 flow are shown in Figure 4.25. Note that over the
range of x considered, a 5% change in the pressure gradient produces
at most a 2% deviation in the computed velocity. In Gardow's tests, the
uncertainty of the pressure transducer readings varied from + .75% to
about + 1.5%. Other errors, such as fluctuating readings could have
increased this uncertainty significantly. While it is difficult to
guess what the actual uncertainty of the velocity readings were, the

+ 5% changes of the pressure gradient do not produce changes in free
stream velocity which are outside the uncertainty of the data.

Figure 4.26 shows the effect of this variation on the best fit
pressure gradient on some of the integral parameters for the Gardow
A-45.2 flow. As can be seen, the effects are substantial. The 5% high
pressure gradient causes the prediction of separation and significantly
increases the crossflow parameter 8.,. The 5% low pressure gradient

12

on the other hand reduces the maximum Reynolds number by 16% and the
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maximum change in Reynolds number ( ) 1is reduced by

Rafinal ~ Roinitial
25%. These results make it difficult to draw strong conclusions about
the prediction methods for the vaneless diffuser flows since the real
pressure gradient is clearly not known to sufficient precision.

The presentation of the results of the variation of the pressure
gradient on all the vaneless diffuser flows are summarized in Table 4.1
which gives the most pertinent results. The pressure gradient was
varied for three of the methods, Bradshaw, EV and EVLR for all of the
vaneless diffuser flows. For each flow the dimensionless separation
point location is listed at Xs/xlast' In addition, values of Re, Cf

and Bw are given. These values of R_, C and Bw correspond to the

8’ °f
last value of x 1if the flow does not separate when the 5% high gg is
applied. If the flow separates with the 5% high %5 these values Re,

Cf and Bw obtain at the value of x where the 5% high %5 calcula-

tion separates. Comparison of the three gg cases for a given flow
shows clearly, because of the large differences obtained, the importance
of very accurate measurement or representation of the pressure gradient
in strong adverse pressure gradient flows.
D.7 Variable Initial Shear Stress Effects

Since none of the vaneless diffuser flows had measured shear stress
profiles at the start, the Nash and Bradshaw methods, which require a
starting shear stress profile, were started using the mixing length
model. It was thus of interest to see how sensitive the calculations
were to this selection. The Bradshaw calculations for the vaneless dif-

fusers were all recomputed using an initial shear stress distribution

which was uniformly changed by plus and minus 10% at each values of y.
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The results of these calculations are summarized in Table 4.2. For the
flows, in which separation is not predicted, Gardow A-45.2 and Jansen
47 degrees, it is seen that the changes in the prigicted results were
not signifi.ant. On the other hand, the separation points of the sep-
arating flows were significantly altered by the changes in shear stress
at the start. It is possible then, that in some flows the initial shear
stress distribution could make the difference between a prediction of
separation and no separation. It is thus concluded that knowledge of
the initial shear stress distribution is important in the prediction of
flows with very strong adverse pressure gradients.
D.8 Summary of Vaneless Diffuser Flows

When the effects of the uncertainty in the pressure gradient is
taken into account, it appears that all tested methods predict the flows
to within the uncertainty of the data. However, no method was signifi-
cantly superior in predictive ability. What is demonstrated is the need
for a better vaneless diffuser experiment in which the uncertainties in
the measured quantities can be reduced and the shear stresses measured
directly. This may necessitate using higher fluid velocities and higher
Reynolds numbers than were used by Gardow and Jansen. Although selec-
tion of "best” shear stress model cannot be made on the basis of the
vaneless diffuser calculations here, the fact that the different methods
produce such different results indicates that there may indeed be one
method which is preferable at the low Reynolds numbers studied here.
Much more precise low Reynolds number flow data than is today available

is required however to pinpoint the best method if one exists.
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E. Summary of Comparisons with Experiments

In summary, it appears that all closure assumptions tested here for
three-dimensional turbulent boundary layers gave predicted mean velocity
profiles within the accuracy of the data. Prediction of the shear
stress profiles was not so accurate. In the Johnston step flow, the
eddy viscosity model failed to predict the shear stress magnituue accu-
rately while the Nash and Bradshaw methods were in good agreement with
the data. In this same flow, no method accurately predicted the direc-
tion of the shear stress, but the Bradshaw method was closer to the data
than either the Nash or eddy viscosity methods. In the Bradshaw and
Terrell flow, the only other flow in which shear stresses were measured,
no method was successful in accurately predicting the shear stress
magnitude. For this same flow when experimental uncertainty is consid-
ered, no method was significantly superior in predicting the magnitude
or the direction of the shear stress. Since in most engineering applica-

tions, it is the prediction of the mean velocity field which is impor-

tant, no fully rational basis is available for selection of the best of
the differential prediction schemes considered in this study. This is
not to say that one method is not preferable - just that a preference
cannot be distinguished on the basis of the present data. More experi-
ments are needed to fully differentiate the merits of the various pro-
posed methods. It should be kept in mind that the methods tried in the
present study all work well in two dimension at moderate (5-50 thousand)
momentum Reynolds numbers and thus their good performance in three dimen-

sion was considered an expected possibility.
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CHAPTER 5

CALCULATION OF IDEALIZED FLOWS

A. Introduction

Frequently it is of interest to perform predictions of the boundary
layer growth in configurations for which there is no data. Of course,
the ultimate purpose of any boundary layer prediction method is to pre-
dict and optimize the performance of fluid mechanical machines in the
design stage. With the extremely complex flow fields present in most
real devices however, insight into the actual fluid behavior is the most
that can be expected from present day boundary prediction methods. 1In
addition although the best method to evaluate the performance of a pre-
diction method is to compare its predictions to experimental data, pre-
dictions of purely theoretical flows can give insight into the relative
performance of prediction methods.

An example of purely theoretical predictions of three-dimensional
turbulent boundary layers is the work of Cumpsty and Head (1967). They
performed predictions using their integral entrainment method on a
series of idealized infinite swept wing flows with a variable sweep
angle (wi). We have also predicted the Cumpsty and Head swept wing
flows. 1In addition, we have performed calculations for a series of

vaneless diffuser flows with various inlet conditions.

B. Cumpsty and Head Infinite Swept Wing Demonstration Cases

Cumpsty and Head (1967) proposed a set of infinite wings in which
the free stream velocity over the rear (adverse pressure gradient

region) 1is given by

133



]

U

[oe}

QOO cos wi(l - kx) (5.1a)

W

[o0]

Q00 sin wi (5.1b)
where x is measured in the chordwise direction, ¢i is the effective
sweep angle (Figure 1.2b) at the start of the adverse pressure gradient
and k is a constant determining the strength of the pressure gradient.
Both Bradshaw (1969) and Cumpsty and Head (1967) performed prediction

using a value of k of 0.25, the value fhat has been used in the pres-
ent work. The boundary layer was assumed to be collateral at the start

of the flow (x = 0) and to have the parameters

elli = 0.00234 feet
(5.2a)
Q, = 1.00 ft/sec
Qooel]_ .
Re =3 = 2690 (5.2b)
111
Hi = 1.41 - (5.2¢)

Calculations were performed at values of wi of 0, 17.5, 35, and 52.5
degrees. Only the Bradshaw model and the eddy viscosity model (without)
the low Reynolds number correction) were tried in these calculations.
For brevity, only certain key characteristics of the results have been
presented.

In Figure 5.1 are presented the results for the position of the
separation point as a function of sweep angle. This figure shows that
there exists a difference between our predictions using Bradshaw's
method and the predictions made by Bradshaw himself. This difference
appears to be a consequence of the different methods of handling the
wall boundary conditions in flows with large crossflows. For two-dimensional

flows, our wall condition and that used by Bradshaw are very similar
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and consequently the two methods produce the same results for zero sweep
angle.

The Cumpsty and Head prediction has a rather different character
than the other predictions shown on Figure 5.1. For large sweep angles,
Cumpsty and Head predict that the separation value of x will decrease
rather than increase with increasing sweep. The Cumpsty and Head re-
sults are, of course, an integral method and it is probable that they
are not as reliable as the differential methods, particularly near
separation.

Difficulty was encountered with the eddy viscosity model in pre-
dicting the separation point for zero sweep angle, which is a case of
singular separation (ordinary separation occurs for all other values of
sweep for all methods). As mentioned in Chapter 4 in the section on the
East and Hoxey plane of symmetry flow, successful prediction of singular
separation using the Townsend form of law of the wall as part of the
wall conditions is dependent upon a high shear stress gradient between
the wall and the first mesh point away from the wall. Without this
shear gradient effect, the conventional law of the wall (Equation 2.27)
predicts separation too far downstream. As separation is approached,
the velocity profile becomes inflected and the y gradient of velocity
(66/5y), near the wall is reduced. With its shear stress rate equa-
tion, the Bradshaw method continues to predict a high shear stress at
the first mesh point despite the decrease in y gradient of velocity.
Since the wall shear stress is dropping rapidly as separation is ap-
proached, el remains high. On the other hand, with the eddy viscosity

Ay

model the shear stress at the first mesh point responds immediately to

135



-

XN

the reduced Sy and consequently, %% also drops. When this low %§
is used in Equation 2.29, a high value of T results and prediction of
separation is delayed. Evidently, in the East and Hoxey Flow, the ad-
verse pressure gradient was so strong and the advent of separation so
sudden that this difficulty with the eddy viscosity model was not appar-
ent. In the Cumpsty and Head flow, using the eddy viscosity model, the
wall shear stress drops to a low value but never reaches zero. Since
singular separation was expected (based on the other prediction methods)
for the wing with zero sweep, the estimate of the separation point zero
sweep by the eddy viscosity model shown in Figure 5.1 was obtained by
extrapolating to zero wall shear stress values in the vicinity of x =
1.0 feet.

Figure 5.2 gives some representative predictions of dependent vari-
ables at a value of x which is not near separation, x = 1.0 feet.
With the exception of the Cumpsty and Head predictions, all the methods
give close to the same results. By comparison, the large variations in
the results for separation location, Figure 5.1, probably results from
the different ways in which the various methods behave near separation.
Although the methods presented in Figure 5.1 do have the capability of
predicting separation, they were not designed using separating flows and
thus when the various parameters start to change rapidly with x as

separation is approached, they all behave in different ways.

C. Vaneless Diffuser Demonstration Cases

Tn an ideal inviscid flow, the streamlines in a parallel walled
radial vaneless diffuser (Figure 1.2d) follows a logarithmic spiral, and

radial and tangential velocity components are given by:
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= |7

(5.3a)

and
Ri
W =W Y (5.3b)

Such a velocity variation would approximate that in the free-stream for

a vaneless diffuser where the spacing between the walls is very large

compared to the thickness of the boundary layers. This velocity dis-
— , -1 (Yo

tribution, produces a swirl angle § = tan T which is constant with

o

radius. In actual diffusers, the boundary layers on the walls of the

diffuser grow rapidly with radius and cause an apparent convergence of

the diffuser walls which in turn causes the radial velocity component to

be larger at a given R than the value obtained from Equation 5.3a.

*

U, is in fact controlled by the displacement thickness parameter 6r
5* =§, +86, ¢t 5.4
r—l zan‘h (-)

and the conservation of mass equation written in the form

U, = Q/[2nR(B - 260)] (5.5)

where 6 is the volume flowrate through the diffuser and B 1is the
distance between the parallel walls of the diffuser.

Calculations have been performed, using the eddy viscosity model
and the Bradshaw model on a series of vaneless diffuser flows having
simple logarithmic spiral streamlines with pressure distributions ob-

*

tained from Fulers equation and Equations 5.3 (note: effects of 6r

*
are neglected or 6r << B assumed)
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The initial conditions at x = 0 have been fixed as:

=
]

2000 . (5.7a)

fa o]
]

1.50 (5.7b)

and the flow assumed to be collateral. The only other significant in-
*

let parameter (as long as ér >> B) is the ratio of the inlet boundary

layer thickness to the inlet radius. This parameter has been repre-

sented by Ri/elli' Three values (500, 1000 and 2500) for Ri/e11i

have been used in the computations.

It is worth noting that the flow situation being described here is
highly idealized compared to the flow which one would expect in a real
centrifugal blower or compressor. In real flows, the inlet to the dif-
fuser consists of alternate wakes and jets coming off the impeller
blades which makes the flow both unsteady and non-axisymmetric. 1In ad-
dition the inlet boundary layers would not necessarily be collateral.

The first computed result we shall examine is the separation point
location. Figures 5.3 and 5.4 show the separation point radius as a
function of swirl angle, ¢, for the Bradshaw and eddy viscosity
models. It can be seen that for the range of the parameter Ri/elli
examined, the flow always separates for all values of the swirl angle.
There is a significant effect of the parameter Ri/elli because the
pressure gradient computed by Equation 5.6 is inversely proportional to
the inlet radius. Computations have also been performed for an inlet
Reynolds number of 20,000 with Ri/elli = 500. No significant effect on
separation point was noted.

For any value of Ri/elli the flow separates at very small radius
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ratio, Rs/Ri’ if the swirl angle is greater than about 70 degrees.
The swirl angle becomes large as surge is approached in centrifugal
compressors and it is possible that flow separation in the short vane-
less space just downstream of the impeller is a factor contributing to
the surge problem.

It is also of interest to examine the validity some of the assump-
tions used here as the separation condition is approached. For the
log-spiral streamline pressure gradient and thus the present calcula-
tions to be valid, the boundary layer must not fill the passage (there

*
must be an inviscid core) and the radial displacement thicknesses, 6§ ,

r
must be small compared to the distance between the diffuser walls, B.
In the present calculations, B, has been assumed to be infinite. 1In
Figures 5.5 and 5.6 are presented the results for 5995/Ri versus

swirl angle at a point upstram of separation where R/Ri = 0.9(RS-Ri)Ri.
This radius was selected to avoid the region very close to separation
where the calculations are uncertain due to numerical difficulties, but
close enough to RS so that an idea of the value attained by 6995
when separation is imminent is obtained. Unfortunately, it was found

that the parameter 6995/Ri is very sensitive to the computed location

of the separation point, especially at small swirl angles. The error

band shown in Figures 5.5 and 5.6 represents the approximate variation

in 5995/Ri caused by an error in prediction of the separation point
(RS-Ri)/Ri of + 5%. It is thus difficult to draw the curves for this re-
sult and only the calculated points are shown. The general trend is

evident however. TFor example, for a diffuser with a radius to passage

widthratio at inlet of Ri/B = 10 and a swirl angle of 40 degrees, the
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boundary layer on each wall would fill about 30% of the passage width
as separation is approached. For the same diffuser with purely radial
flow, the boundary layers would have completely filled the passage by
separation.

Figures 5.7 and 5.8 present similar results for éj/Ri' For the
ratio Ri/B of 10 used in discussion above, the radial displacement
thickness 6: on each wall would be about 107 of the passage width at
a swirl angle of 40°, enough to have a 20% effect on the free-stream
radial velocity component (Equation 5.5). The pressure gradient would
thus be reduced from the value used in computation and consequently the
tendency to separation slowed. The reduction of %% is even more pro-
nounced at lower swirl angle i.e. as ¢ — O and it is probable that
for geometriesof high Ri/B separation will never occur for low swirl
angles. High swirl angles are, however, the most common situation in
centrifugal compressor diffusers and in such cases the results given
here are probably more realistic.

A final result of some interest obtained from these vaneless dif-
fuser studies concerns singular separation (at ¢ = 0). Sandborn (1970)
found that for a variety of experimental data, a correlation of integral
parameters produced a criterion for singular separation in two-dimensional
turbulent boundary layers. Sandborn's empirical criterion for singular

turbulent separation is that separation has occurred for values of H

greater than

H=2.12 + 0.306 1og10 xe (5.8a)
2
6 au
11 e

KG =- 7 5;— (5.8b)
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The location of singular separation in the present methods is the point
where a negative or zero value for the wall shear stress is predicted.
The predicted singular separation results for the vaneless diffuser
flows are shown in Figure 5.9 in terms of the correlating parameters H
and xe. The point for the Cumpsty and Head unswept wing (Section B of
this chapter) is also shown for the Bradshaw model. Tt is apparent that
if Sandborn's criterion is proper, H 1is underpredicted at separation
by all the present methods. The prediction of singular separation using

the eddy viscosity model is not considered very reliable due to the

difficulties discussed earlier.

D. Summary

Although it is not possible to use computer experiments of the type
presented in this chapter to certify prediction methods, the results
enable various predictors to compare their results and can also give
insight into the performance of fluid machines. The flows presented

here only represent simple examples of the potential for such calculation.
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CHAPTER ©

SUMMARY

A. Summary of Conclusions

In the course of the present research program, a number of signi-
ficant conclusions have been reached:

1. All three shear stress closure models used in this study permit
prediction of the mean velocity field to within the accuracy of the
data. 1In addition, in flows with moderate Reynolds numbers (Re =
5000-50,000), all models produce results which are in good agreement
with each other. At lower Reynolds numbers, (Re less than 200C) the
methods differ from each other to a greater extent and although it may
be that one model is preferable, a preference cannot be determined
with the available data.

2. There appears to be a large class of three-dimensional flows
that can be predicted with differential methods in which the choice of
shear stress closure assumption is not very important. This class in-
cludes the flow on a flat wall in the vicinity of wing-body junctions,
large bumps and other obstructions. In general, this class of flows
appears to encompass well developed nearly two-dimensional layers which
suddenly encounter very strong adverse pressure gradients.

2, Direct measurements of the shear stress are available in only
two experimental flows. Hence it 1is impossible to draw final conclusions
with regard to the prediction of shear stress magnitude and direction.

In one flow, the Johnston infinite step, the predictions of shear

stress magnitude using the Nash and Bradshaw models were much better
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than the predictions using the present eddy viscosity model. The im-
provement due to the Nash and Bradshaw models can be attributed to the
use of a rate equation to compute the shear stress magnitude. In this
same flow, all models predicted the shear stress direction poorly
although the prediction using the Bradshaw model were closer to the
data. It should be noted that this flow was a very severe test of the
shear stress assumptions but at the same time a flow (see conclusion 2)
in which the shear stress model is not too important for the prediction
of the mean velocity.

In the other flow where shear stresses were measured, the Bradshaw
and Terrell swept plate, the shear stress terms dominate the development
of the boundary layer, i.e. the pressure field is constant. No clear
advantage was shown by any of the closure models either in prediction of
the shear stress magnitude or direction.

4. It has been demonstrated in this study that the streamwise
development of boundary layers in strong adverse pressure gradients is
extremely sensitive to gradients of pressure imposed by the external
pressure field. Thus, if an experimental flow of this type is to be
useful for evaluation of prediction methods, the free stream pressure
gradient must be measured with extreme accuracy, preferably to better
than il%. In the present study, an uncertainty in the pressure gradient
of i5% was found, in a number of flows, to produce extremely wide
variations in the predicted growth of the boundary layer when the
adverse pressure gradient was strong.

5. 1In addition to the major conclusions above, a number of lesser

conclusions were reached.
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a.,

b.

With regard to the accuracy of the available data:

i.

ii.

iii.

ive

Due to the low velocities of the vaneless diffuser
flows and the consequent low, and difficult to mecasure,
total to static pressures, the vaneless diffuser flows
of Jansen and Gardow are of poorer quality than the
other flows considered here. More scatter is apparent
in the velocity profiles and the pressure gradients
have a higher uncertainty (see conclusion by .

The Cumpsty and Head 61° swept wing flow probably does
not meet the assumption of infinite span.

Jansen does not provide tabulations of his data. This
oversight seriously limits the usefulness of this data
source,

The accuracy of the shear stress magnitude data for the
Bradshaw and Terrell flow is questioned., While it is
essentially a two-dimensional flat plate flow with re-
gard to the shear stress magnitude, the measured magni-
tude is 30% to 50% too high compared to results pre-
dicted with the shear stress models., Back checking,
using the eddy viscosity model and the experimental

mean velocity profiles, the same discrepancy was found.

With regard to the numerical method:

i.

At low Reynolds numbers, the numerical method works
poorly. The restriction that the first mesh point
in the y direction fall at a yt+ greater than -C

causes the first mesh point to be too far from the
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wall, often at a y/é9 of greater than

95
0.1 .

ji. The form of law of the wall based on the assumption
that the shear stress is constant in the wall region
significantly overestimates the wall shear stress in
strong adverse pressure gradients. The Townsend form
of the law of the wall, which allows for a linear shear
stress variation in the wall region appears to have
significant advantages in this regard when used as an

inner boundary condition for a differential prediction

method of the type used here.

B. Recommendations for Future Work

In the course of the present program, deficiencies in the available
data became apparent and, in addition, extensions of the present work
suggested themselves.

1. One class of three-dimensional turbulent flows for which data
are needed are those in a moderate Reynolds number range (5,000-50,000)
in which the development of the flow is governed by shear forces and
pressure gradient forces of about the same magnitude. The Cumpsty and
Head 61 degree infinite swept wing experiment is such a flow but appears
to not meet the assumption of infinite span. It is recommended that a
swept wing experiment with moderate sweep (about 45°) be attempted and
that the pressure gradient be mild enough so that the flow develops for
an appreciable distance (20-50 boundary layer thicknesses) before

separation occurs.

154



Since the predictions of the low Reynolds number vaneless dif-
fusers showed a diversity of results, it is apparent that one or more
of the prediction methods is breaking down in the low Reynolds number
regime, Thus, a definitive low Reynolds number, adverse pressure
gradient experiment would be desirable.

2. It is recommended that in future developments of numerical
methods which can handle generalized geometries or solve complete flow
fields, that the simplest of the models tested here, the eddy viscosity
model, be used. It has demonstrated no serious deficiencies in computa-
tion of the mean velocity field and would be the most efficient in terms
of computer time. Although not fully tested in the present program,
the mixing length model is also probably quite adequate. Either of
these methods work well in modern implicit numerical schemes which,
because of their larger x-step, should be more economical with respect

to computer time.

C. Closure

It is hoped that the conclusions of the present work will give
other researchers in turbulent boundary layers confidence in available
three-dimensional turbulent boundary layer prediction schemes and en-
courage them to develop numerical schemes for the calculation of the
flow on generalized geometries and perhaps complete, three-dimensional

flow fields.
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APPENDIX A

THE COMPUTER PROGRAM

A general computer program has been prepared which will accept any
shear stress model considered in the present study. Nine different
decks have been produced however, three for infinite swept wings, three
for the Johnston Step flow and three for the plane of symmetry flows.
In each group of three, one uses the Bradshaw model, another the Nash
model and the third either the eddy viscosity or mixing length models.
Although the time required to change a program from one shear stress
model to another is not long (changes and debugging take less than a
day), different decks for each shear stress model was considered con-
venient. This appendix contains a description of the Bradshaw method
only. The differences in the other programs are not major and would be
readily apparent to an experienced programmer.

Table A.l1 contains a list of the variables used in the computer
program. Table A.2 is a list of input variables showing the input for-
mat and Table A.3 is some sample output. Table A.4 is a complete list-

ing of the Bradshaw model computer program.
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Table A.1 Variables Used in Computer Program

This table gives the equivalence between variables used in the
computer program and the nomenclature used elsewhere in this report

" ", As a general rule, the prefix D on a

which are shown in quotes
computer program variable indicates differentiation with respect to x

and a last letter P on a program variable name indicates differentia-

tion with respect to y. For example

dU/dx

DU
UP = dU/dy
Most of the subscripted variables have the subscript varying in the
y direction and the first value (subscript = 1) is at the first mesh
point away from the wall. Subscripted variables which deviate from this

rule are noted in the list of variables.
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AVUTAU

BETA

BETAW

BETOLD

C

COSs

DBETDX

DELRAT

DELTA

DELTAX

DELTAZ

DPDR

DUTAU

DX

DX1

D995

EPS

H1

ITER

IUNIT

Table A-1 (Cont'd) SIMPLE VARIABLES

Average value of ”QT”

, (UTAU + UTAUO)2.0

Value of "B" at first mesh point

L3¢ 1"

Angle of limiting wall streamline Yw

¥ at first mesh point from previous x-step

1"t

© in Equation 3.10

Cosine of "|", free-stream velocity angle

ot

”éyl/éx”, rate of change of vy, with "x", FEquation 2.36

1" I 1 1
8"/ 8995

. n

Maximum 'y value of calculations at each x-step

"§ ", displacement thickness

"dP/dx", pressure gradient

”OQT/Bx”, see Equation 2.36

"ax", "x" increment
"x" increments where UINF and DUINF read in
”6995", boundary layer thickness

Eddy viscosity "€"
"H', shape factor
Inlet "H"

Index or counter

Number of iterations.

Determine if Equation 3.2 or 3.3 used

Number of "x'"-values where printout required

Index or Counter

NY + 2
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KD995
KL

L

LX

ND
NIT
NPRINT
NU

NY
OMEGA
PA
PEPS
PHI1
PI
PRNT
PSIO

QINF1

RI

SINS
TAUM
TAUl
THETAX

THETAZ

Table A-1 (Cont'd)

Lower index of y 1in interval where 6995
= 1, part of an obsolete procedure

Index or Counter

Number of UINF and DUINF values read in
DELRAT = 1.4 + O0.1*%ND, determines width of
Number of iterations, 1 or 2

Printout required every NPRINT x-step

"v" kinematic viscosity

"N", number of y-grid points

= 0.0, part of obsolete feature

Johnston's "A", Equation 1.21b

Tangent of "Bw”

Inlet "¢", swirl or sweep angle

Coles' 1l

= 1 in printout required, = 0 otherwise
"\, free stream velocity direction

"Q,", free stream velocity magnitude

"R", radius of vaneless diffuser

"R", at starting "x"

"g", mixing length

sine of "y"

" 4]

max

T at first mesh point away from wall

"911", momentum thickness
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THETXZ

THETZX

THETI

W

Tl

T2

UTAU

UTAUO

UTS

XI

XL

X1

YCON

YFIRST

YN

YSCALE

Table A-1 (Cont'd)

at starting "x"

" "
e11

”Tw”, wall shear stress

Variable used in synthetic initial crossflow velocity profile

Variable used in synthetic initial crossflow velocity profile

QT”, shear velocity
”QT" at previous x-station
”UTs” square root of component of T = in streamwise direction,

Equation 3.14

"r " "x"-component of wall shear stress

w,X
"x" coordinate direction

"r " z-component of wall shear stress

W,z

"x" at start of calculation

"x" at end of calculation

Value of "x'" where first UINF and DUINF values given
"c" in Equation 3.10

Use in calculation of YCON

Number of y points

Scale factor of "y" in reading in starting velocity profiles.

Y =Y. % YSCALE
input
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Table A-1 (Cont'd)

SUBSCRIPTED VARIABLES'
ANGVEL Velocity angle = tan"! "w"/"U", ANGVEL(l) is wall value
ANGVLN New value of ANGVEL, used in interpolation, ANGVLN(1l) is wall valu.

ANGVLP O(ANGVEL) /OY, ANGVLP(1) is value at first mesh point

DU "ou/ox"

DUINF "3Q/Ix", array in x-direction

DUV ”5Tx/éx”

DVW ”sz/dx"

DW oW/ dx"

GUvV ”GTX", part of diffusion term in Equation 2.19
GVW ﬁGTZ", part of diffusion term in Equation 2.20

Q "Q", wvelocity magnitude

QN "Q", mnew value used in interpolation

QP "oQ/dy"

TAU "t'", magnitude of shear stress

U "u", "x" component of velocity

Uu "Uz", used in evaluating integral parameters
UINF "Qm", free stream velocity, array in "x"-direction
UN "U", new value, used to evaluate QN and ANGVLN
UP "au/ay"

Us ”US", streamwise component of velocity

uv ”TX", x-component of shear stress

UVN Same as UV, new value used for VCXN

+Except as noted, all arrays are in y-direction and have their first
value at first mesh point away from wall.
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Table A-1 (Cont'd)

uvP '_'dwx/ oy"
uvs STS", streamwise component of shear stress
\ "y'", wvelocity normal to wall
VCX TTX", same as UV except first value is wall value
VCXN Same as VCX, new value used for interpolation
vVCY DTZ”, same as VW except first value is wall value
VCYN Same as VCY, new value used for interpolation
VW !TZ”, z-component of shear stress
VWN Same as VW, new value used for VCYN
VWP f@Tz/dy”
VWS fp O
c
W "W", z-component of velocity
WN "W", new value use for QN and ANGVLN
WP "W/ dy"
WS ”ws“, streamwise component of velocity
WU "y U", wused in integral parameter evaluation
WW 'Vz”, used in integral parameter evaluation
XF values of "x" where UINF, DUINF read in

n_n

XPRINT Values of x" where printout desired

Y Ty

YP "y" old value used for interpolation

Y2 "y, same as Y except first value is wall value
Y2N Same as Y2, new value used for interpolation
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Table A.2 - Input Data Format

This table contains the format of the input cards to run the com-

puter program. The following are special notes concerning the use of

the program.

1. For infinite wing flows, the initial R should be assigned a value
of 1.0 E + 08 or larger.

2. For two dimensional flows, the initial values of PSI, BETAW and A
should be 0.0

3. The values of U and W on card 10 (and continuation cards) are in
an x'z'y coordinate system which is rotated about the y-axis an
angle PSI (§) relative to the x-axis.

y
2 T T T~ /PSI ”
~
~ - o

4., All inputs of angles are in degrees.

5. The unit system used is not important but must be consistent, i.e.,
if NU 1is given in ftz/sec, velocities must be in ft/sec and dis-
tances in feet.

Card 1 - column 2-80, A 79 letter title

Card 2 - Column 1-10 1Initial x

11-20 Final x
21-30 1Initial free stream velocity

31-40 1Initial shape factor, H
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Table A.2 (Cont'd)

41-50 1Initial momentum thickness, 611
51-60 1Initial shear velocity, QT

61-70 Kinematic viscosity, v

Card 3 - column 1-10 Radius at initial x
11-20 ¢ at initial x
21-30 Angular velocity (= 0)
31-40 Bw at initial x
41-50 Boundary layer thickness at x initial
51-60 'A' in Johnston triangular profile model

(Eq. 1.21b)

Card &4 - column 1-10 Value of x where first UINF, DUINF value given
11-20 Increment of x where UINF, DUINF given
21-25 1Integer number of UINF, DUINF values

Card 5 7F10.3 format UINF values

Use additional cards as required

Card 6 7F10.3 format DUINF values

Use additional cards as required

Card 7 - column 1-2 Integer number y points
3-4 Integer x stations between printout
5-6 = 01 synthetic profile, = 00 experimental profiles
7-8  Number of specific x wvalues where printout desired
9-10 Number of iterations (usually 2)
11-12 ND where DELTA/D995 = (1.4 + 0.1%ND)

Card 8 7F10.3 format, values of x where printout desired

in increasing value, must be greater than x initial

Use additional cards as required (max. 20 x values)
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Table A.2 (Cont'd)

Card 9 - column 1-10 YSCALE, normalizing value for v in experi-

mental starting profiles

card 10 - column 1-10 Y/YSCALE
11-20 U/QINF
21-30 W/QINF

Use additional cards as required
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Table A.4 Bradshaw Model

Computer Program Listing

THREE DIMENSIONAL TURBULENT BOUNMDARY LAYER PREDICTION USING THE S5e
BPADSHAW METHOD 6.
THIS PROGRAM CAN BE USED TC PREDICT THE GROWTH OF THE THREE-DIMENSTONAL 7.
TURBULENT BOUNDARY LAYERS IN YINFIMITE WINGS * AND AXIALLY SYMMETRIC 8.
RADITAL VANELESS DIFFUSERS IF THFE EXTERNAL PRESSURE FIELD IS KNOWN 9,
THF INPUT DATA IS AS FOLLCOWS 10.
CARD 1 - CCLUMN 2-80,A 79 LETTER TITLE 11,
CARD 2 - COLUMN 1-10C INITIAL X 12.
11-20 FINAL X 13.

21-30 INITIAL FREE STREAM VELOCITY 14.

31-4C INITIAL SHAPE FACTOR H 15.

41-50 INITIAL MIMENTUM THICKNESS THETIL1 16,

51-60C INITIAL SHEAR VELOCITY, UTAU 17.

61-70 KINEMATIC VISCOSITY, NU 18.

CAPD 3 - COLUMN 1-10 RADIUS AT INITIAL X 19.
11-20 PST AT INITIAL X 20.

21-30 AMGULAR VELNCITY(=0.0) 21.

21-40 BETAW AT INITIAL X 22.

41-50 ROUNDARY LAYER THICKNESS AT INITIAL X 23.

51-60 *A* IN JCHNSTON TRIANGULAR CROSSFLOW MODEL 24,

CAPD &4 — COLUMN 1-10 VALUE OF X WHERE FIRST UINF, DUINF VALUE GIVEN 25.
11-2C It CREMENT OF X WHERE UINF, DUINF VALUES GIVEN 26,
21-25 INTEGER MUMBER OF UINF, DUINF VALUES , MOVE 70O 27.

RIGHT SICE OF INTERVAL, E.G. 00013 28,

CAPD & PUNCH SUCCESSIVE UIMF VALUES IN COLUMNS 1-10,11-20,21-30, 29.
31-40441-50,51-60,61-70 30.

USE ADDITIONAL CARDS AS REQUIRED 31,

CAPD 6 - PUNCH DUINF VALUES IN SAMt FORMAT AS UINF VALUES. USE 32.
ADDITICNAL CAFRDS AS REQUIRED 33,

CARD 7 - COLUNN 1~ 2 IMTEGER AUM3ER OF Y POINTS 34,
3- 4 INTEGER AUMBER 0OF X-STATIONS RETWEEN PRINTOUT 35.

- 6 =01 SYNTHETIC PPOFILE, =00 EXPERIMENTAL 36.

STARTING VELOCITY PRCFILE 7.

7- 8 NUMBER OF SPECIFIC X-STATIONS WHERE PRINTOUT 38.

REQUIRED 39.

9-10 NUMBFR UOF TTERATIONS, USUALLY 02 40.

11-12 NDJWHEPE DELTA/D995=(1.4+0,1*ND} 41

CAFD B - SUCCESSIVE VALUES OF X WHERE PRINTOUT REQUIRFD IN INCREAS- 42,
ING VALUF, MUST BE GREATERP THAN X INITIAL 43,

MAXIMUM 20 X VALUES 44,

CARD 9 = COLUMN 1-10 YSCALE, MIRMALIZING VALUE FOR Y IN EXPERIMENTAL 45,
STARTING VELOCITY PROFILES. THIS AND SUCCESS- 45,

IVE CARDS MOT REQUIRED WITH SYNTHETIC START 47,

CARD 10 - COLUMN 1-10 Y/YSCALC 43,
11-20 L/QINF1 49,

21-30 W/QINTF1 50.

THF VALUES OF U AND W READ IN ARE IN A COORDINATE SYSTEM ROTATED 51.
ABOUT THE Y-AXIS BY PST INITIAL RELATIVE TO THE X-AXIS 52.
ON CARD 10 IT IS ALSY POSSIRE TO RZAD TAUX/QINF1*%2 AND YAUZ/ 53.
QIMF1%%2 IN COLUMNS 31-40 AND 41-50 RESPECTIVELY. IF THIS IS DONE, 54.
STATEMENT 22 MUST RE MOVED S0 THAT IT IMMEDIATELY FOLLOWS STATEMENT 40 55,
INSTEAD OF BEING THF SFCOND STATCMENT AFTER STATEMENT 21 56
DIMENSION TITLE(20),Y(43),U0{43),W{43}),Q043),QP(43), 57,
TUVE43), VW(43) ,UVSI43) s Vh5{43) ,UUS(43),WS(43) ,WHW(43),WU(43]), 53.
2UUC43),UP(42),WP(43), VWP {47 ), 1IVP(43),YD(43) 4VN(43),0U(43), 57,
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3DW(43),DUVI43) ,DVW(43) ,UNL43) sWN(43) ,UVN(43),VWN(43)
44V(43)y, QN(43)4XPRINT(20), ANGVEL {44) JANGVLN{44) ,ANGVLP (43) ,
5 GUVI43),GVH(43),TAU(43)
69 XEL50) 3 WINF(50),DUINF{S0),Y2(44),VCX{44) 4VCY(44)
T1Y2N{45) s VEXN(45) 3 VCYN(45)
EQUIVALENCE (VCX (1) yUVW) 5 (VEXI2) yUV(L)) , (VCY (1) g VWH) o (VCY(2) 4VW(1))
1o 0Y202) 3 Y UL YD (Y2NE2),YOU1) ), {VCXNI2)3UVN(L) )y (VCYN(2), VWN( L))
REAL NU,NUOUT
INTEGER XSTAT,PRNT
Y2(1)=0,0
Y2N{(11=0.0
[ deodokoxe
C INPUT TITLE,GEOMETRY, INLET CONDITIOMS AND RUN PARAMETERS
ook

1 REAC(5,4) TITLE
PRNT=1
4 FORMAT( 20A4)

REAC(5,5)XI4XLyQINF1,HL,THET1,UTAU,NU,RI,PHI1,(OMEGA,ANGVLNI( 1)
1,DELTA ,PA
REAC(5,7G8)X1,DX1,4LX

798 FORMAT(2F10.3,15)
REAC(5,5) (UIMNF(T)y1=
REAC{5,5) (DUINF(I),I
XF{1)=X1
DO 797 1=2,LX

797 XF(I)=XF{I-1)+DX1

5 FORMAT(7F10.3)
READ(S5,6)NY sNPRINT, 1T, TUNITNIT,ND
DELRAT=1.4+40.1*FLOAT(ND)
IF(IUNIT.GT.0) READ(S,5){XPRINT(I),I=1, IUNIT)

1,LX)
=1,LX)

6 FORMAT( 612)
£tk &
C WRITE QOUT HEADINGS
C ook
WRITE(A,8) TITLE
8 FORMAT (1H1, 16X, 20A4)
WRITE(6,9)RI ,UTAU,ANGVLN(1},PHI1,QINF1,HL,THETL ,NU
9 FORPMAT{ 19X,45H BRADSWHAW 3D BOUNDARY LAYER PREDICTION
1/20X,"INSIDE RADIUS =",F10.342X, *INITIAL UTAU =¢,F10.5/20X,
2'INITIAL BETAW =*,F10.6+2X,*SWIRL ANGLE =*,F10.3/20X,
3YINLET VELOCITY=*,F10.342X, 'INLET H =',F1C.3 /20X,
GUYINLET THETA =ty F10e5," NU*,12X4*="4FLl0.7//)

DELTAX=HL*T+ET]
PHI1=PHI1%*3,14159/180.0
ANGVLN{1)=ANGYLN{1)%3,14153/180.+PHI1
LIS=UTAURSQRT{COS{ANGVLA(L)-PHIL1))
UTAUO=UTAU
XSTAT=1
R=F1
C=0.3
K=NY+2
X=X1
DX=0.
DUT AU=0.
CBETOX=0.
[ 1 2
C READ IN VELOCITY PROFILES
% ek
COSS=COS{PHIL)
SINS=STIN(PHI1)
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18

17

19

Codokex
C SYNTHETIC PROFILES

CHx

C ULSF COLES LAW OF WALL-WAKE TO CCMPUTE INITIAL STREAMWISE VELOCITY PROF

20
c v

23

22

* 3k

SE

21

IF(ITLEQ.1)GC TO 20
READ(5,18) YSCALE

REAC(S, 181 Y(I)UNCTI)oWNCT) ,UVET) 4 VWD)
FORMAT(5E10.3)
DO 17 I=1,2
UNCNY +1)=UNINY)}
WNINY+I)=WN(NY)
UVINY+!1)=0.
VW(NY+I)=0.
YINY+D)=Y(NY)Y+(Y(NY)-Y(NY=-1)) *F LOAT(I)
00 19 I=1,K

Y{I)=Y{T1)*YSCALE

UNCT)I=UN(T)=QINFL

WN{I)Y=WN(T)I®QINF1
UV T ==UV{T)*QINF1*%2

VWD) ==VW{T )®QINF1%*%*2
ANGVINUT+1)=ATAN(WN(T)/UN(CI)) +PHII
UVNCT)=UVIT }2COS{PHIL)-VW{I ) *STN(PHIL)
VWN(I)=UVIT ) *SIN(PHIL )Y+ VW (I ) %COS({PHIL)
QN(I) =SQRT(UN(I)**2+WN{ 1) *%2)
GO TO 22

¢t I=1,NY

CALL SYNQPUF1,THET1,QINF1,NY,NU,Y,US,UTS ,DELTA)

JOHNSTON TRIANGULAR MCDEL TO COMPUTE IMITIAL CROSSFLOW VELOCITY

PEPS=SIN(ANGVLN(1)-PHI1)/COSLANGVLN(1)~PHI1)

DO 23 1=1,.K

T1=PEPS*US({I)}/US(NY)
T2=PA%(1.-US(I}Y/US(NY))
T1=AMIN1{(T1,T72)

WS (T)=T1*US(NY)

DO 21 I=1,K
GNOT)=SQRT(US(TI®*x2+WS( ) *%2)
ANGVLN(TI+1)=ATAN(WS (T }/US(I))+PHI1
BETOLD=ANGVLN(2)

CCNTINUE

C CALCULATE Y DERIVATIVES OF STARTING PROFILES
QP{IY=((QN(L1)=QN( 2} I/ALOGIY (L) /Y(2) } ) /Y L)

28
30
2¢

C CALCULATE INITIAL SHEAR STRESS PROFILES USING A MIXING LENGTH

31

33

ANGVLP(1)=DERIV(ANGVLN,Y2,2)
D0 29 I=2,NY
TFO(Y(T)*UTAL/NU) GTL200) GC TO 28

QPUIN=C(QN{I-1)-QN(I+ 1)) ZALCGIY(T-1)/Y(I+1)D)/Y L)

GC YO 30

QP{I)=DERIVICN,Y,I)

ANGVLP{ I)=DERIV{ANGVLN, Y2,1+1)
CONTINUE

D0 31 I1=14NY

UP(T)=QP(T)*COSCANGVLN(TI+1))-QN(T)*SIN{ANGVLN(I+1)) *ANGVLP(IT)
WP(I)=QP{T)ASINCANGVLN{I+1))+QN(T)*COSCANGVLN(I+1)})*ANGVLP(T)

NUCUT=0,016%QNINY)*DELTAX

INNER=1

RML=0.

DO 40 I=1,NY
RML=AMAXL{RMLFLORL(Y(T)/DELTA)*DELTA)
IF(RML/DELTA,.GT ..079)RML=,0T73*DEL TA
FPS=(RML*#%2 )} %SQRT(UP( 1) *%x2+WP (] )%**2)
UVN{T)=-UP( T)*EPS
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40

35

VWN(I)==WP(I)*EPS

CONTINUE

D0 35 1=1,2

UVN(NY+T1)=0.0

VWN{NY+1)=0.0
VCXN(1)==—UTAU**x2%xCOS(ANGVLN(1))
VCYN(1)=—UTAU*%2*SIN(ANGVLN (1))
DPDR=DPDRF{ X, UINF DUINF,XF,LX)
0995=DELTA

C START REPEATING PART CF CALCULATIONS.(ALL PREVIOUS STATEMENTS
C COMCERNED INPUT OR INITIALIZATION

44

CCNTINUE
IF{(XSTAT/NPRINT) *NPRINT-XSTAT,EQ.0) PRNT=]

C FIND D995

501
511

DO 501 I=1,K

KDG95=1~-1

IF(ABS(1.0-CN(T3}/QN(K)).LE.O0.005) GO TO 511
CONTINUE

D995 =Y (KD995 ) +(Y(KD99541)-Y (KD995) ) *(0,995%QN(K }=-QN(KD935) )/
L1IQN(KDIS5+1 )-CN(KD9951))

DELTA=D995*DEL RAT

C ESTIMATE CCLES PI

PI=0.2%(QNINY) /UTAU=-{ 2, 5*%ALOG(DI9IS*UTAU/NU) +5.) )

C ESTIMATE THE X GRADIENT OF UTAU

C ESTIMATE
C MESH POINT
IF(0X/D995.GT.0.,00L )CRETOX=( (ANGVLN(2)~-BETOLD}/DX+DBETNX) /2.0

Coktmx

C SET
C Mook ok

IF(DX/D995,6T.0.0C1)DUTAU=( (UTAU-UTAUQ} /DX+DUTAU}/2.

Y GRID AND INTERPOLATE VALUES

CPUT OLD Y IN OLD Y STORE

C SUBTRACT VELOCITY COMPUTED BY LAW OF WALL WAKE

C FOR

75
¢ SET

100

DO 75 1=1,4K

INTERPOLATICN

QNCI)=QN(T)-UWAKE(Y(T),UTAU,PT,DO95,NU)

YCO(I)=y (1)

Y GRID

YN=FLOAT(NY)

YEIRST=DELTA®*{(C/YN+ (1.-C)*(1./YN}*%2)
AVUTAU=0.5*(UTAU+UTAUD)

YCON=30.*NU/AVUTAU =-YFIRST

DO 100 I=1,K

Y(I)=DELTA* {C*FLOAT(IV/YN+(1.-CI*(FLOAT(I}/YN}**2)+YCON

C INTERPOLATE TO FIND VALUES CF U ETC. ON NEW Y GRID

8é
101
87
¢ anr

M=1

DN 110 I=1,K

DO 86 J=1,K

L=J

IFIY(1)LT.YC(J)) GO TO 101

CONTINUE

L=L~-1

CALL INT(Y(I)sQUI)eYO,QN4K,4L,42)

BACK VALUE CF VELOCITY CCMPUTED BY LAW OF WALL WAKE AFTER

C INTERPOLATION

88

QEI)=Q(I)+UWAKE(Y (1),UTAU,P1,D395,NU)

CALL INTUY(I), UVOL) 9 Y2N,VOXNyK+14L+1,2)

CALL INTU{Y(I),VW{I),Y2N,VCYN,K¢1yL #+1,2)

CALL INTUY(T),ANGVEL(I+1) 3Y2NJANGVLNK+1,L+1,2)
U(I)=Q( 1) *CCS(ANGVEL(I+1})
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W{T)=QUI)*SINCANGVEL(I+1))
110 CCNTINUE

UTAUO=UTAU

BETOLD=ANGVEL(2)

DO 206 ITER=14NIT

C CALCULATE MAXIMUM SHEAK STRFSS
CALL MAXSHRI{K ,UV,VW,TAU,TAUM)

C % ek

CPREDICTION OF UyW ETC., AT FIPST MESH POINT

C %ok
CALL GFCALC(UV,VWsQINY)4K,Y,D995,GUV,GVW, TAUM)

C CALCULATE SHEAR STRESS GRADIENTS AT FIRST MESH POINT
TAU1=TAU(1)

UTAU=WSF(Q(1),Y (1), TAUL,UTALI,NU)

C FIMD BFTAW BY TAYLNR SERIES EXTRAPOLATICN FROM QUTER POINTS

ANGVEL(L)=ANGVEL(2) =Y (1 )% {ANGVEL(3)-ANGVEL(2))/(Y(2})-Y( 1))
140,55 (Y { L) %x*2)* ((ANGVEL(4)-ANGVEL(3))/(Y(3)~Y(2))})-{ANGVEL (3]~
2ANGVELI2N)Z (Y (2)=Y (1)) /(0. 5%(Y(3)-Y(1) )

Tw=UTAU**2

UVW==TW*COS (ANGVEL{( L))

VhWw=-TW*SIN{ANGVEL(1))

UVP (1) =DERIV(V(X,Y2,2)

VWP (1)} =DERIVIVCY,Y2,2}

DO 144 [=1,K

IF(UVIT)GT O IVIW(T)=0,

IF(UV(I).GT.0.) UVI(I)=0,

C SUBTRACT LAW OF WALL VCLOCITY FROM Q FOR DIFFERENTIATION

144 QUIV=QUI)~UTAU*(2.5%ALOG(Y (TH=UTAU/NU)+5,)

C CALCULATE VELOCITY GRALCIFNTS AT FIRST MESH POINT
QPILI=(QE2)=Q( 1)) /(Y (2)-Y(1))+2,5*%UTAU/Y(1)
ANGVLP(1)=DERIVIANGVFEL,Y2,2)

C CALCULATE Y DERIVATIVFS OF L,W,UV,VW: NAMELY UP,WP,UVP, AND VWP

145 D0 148 1=2,NY

ANGVLP(I)=DERIV(ANGVEL,Y2,1+1)

UVP{T)=DERIVIUV,Y,I)

VWP (I )=DERIV(VW,Y,I)

148 QPUI)=DERIVIQ,Y,1)+2.5%UTAU/Y(])
D0 149 I=1,K
149 QUIN=QUI}+UTAU*{2.,5%ALOGIY({TI*UTAU/NU)}+5.)

DO 150 I=1,NY

UP(T)=QP(T)*COS(ANGVEL(I+1)}-Q(I)*SINCANGVEL(I+1) }=ANGVLP(I)

WP(T)=QP(I)*SIN(ANGVEL(TI+1))+Q(I)*COSCANGVFL (I+1))*ANGVLP(I)

150 CONTINUE
C ESTIMATE NORMAL VELOCITY VvV AT FIRST MESH POINT
V(1)=-COS{ANGVFL{2)}*(4C5.*NU*DUTAU/UTAU+298.%*NU/R)
1+SINCANGVEL(2)) #CBETUX*296. 5*NU
CALL VCALCUNY, U,W,V,Y3R40OPDR,UVP,GMEGA)
€ FORCE PRINTOUT IF QRDIMARY SEPARATINM HAS OCCURED
IF{ABSIANGVEL(1)).GT.1.5703) PRNT=1
IFCITERL.GT.1) GO TC 111
TF(PRNT.NE.1} GC TO 111
C bk
C CALCULATION OF INTEGRAL PARAMETERS
(e 2 2 24
C CALCULATE THE STREAMWISE AMD CROSSFLOW COMPONENTS OF VELOCITY
PSIO=ANGVEL{NY+1)
BETA=ANGVEL (2 )-ANGVEL (MY +1)
BETAW=ANGVELI(1)
COS S=CNS{PsSIO)
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SINS=SIN{PSIQ)
DO 50 I=1,K
UVS{I ) =UV(T)I*COSS+VW({T)I®SINS
VAS(I)==UV(I}=SINS+VW{T}*COSS
US(I)=U(TI)*CCSS+W({T)I%SINS
WSET)==U(T)*SINS+W(T)*C0OSS
WULTY=US(I)*WS (I}
WWET)=WS(])*x%x2
UU(T)=US(T)**2
59 CONTINUE

C CALCULATE THE PARAMETERS
KL=1
DEL TAX=DXF{NY,US,YsLTAU,KL,BETA,Q,NU)

109 THETAX=THXF(ANY,UU,Y,UTAU,KL BETA,DELTAXUS,Q,NU)
DELTALZ= CZFINY WS, Y UTAU,KLBFTA,US,QyNU)
THETAZ= THZF{NY s WWsY UTAU,KL,BETA,US,QyNU}
THETZ X= THIXF(NY WUsY,UTAU,KL,BETA,US,Q,NU}
THETXZ=DELTAZ-THETZ X
H=DELTAX/THETAX

C &k &
C PRINTOUT RESULTS
C % okode ok
65 CALL SPRINT(US WS yUVS,VWSyNYyDELTA,D995,DELTAX, THETAX,
IDELTAZ yTHETAZ yTHETZX s THETXZ yHyBETAW, XSTAT,R 4y IUNIT 4V ,Y,UTAU,PSIO
2+ Xy NU)
ITF(ABSTUANGVEL(1)).GT.1e5703) G TO 1
IF(X.GE.XL)} GC TO 1
66 PRNT =0
111 CONTINUE
C CALCULATE TEHE XSTEP
IF(ITER.FQ.2) GO TO 61
DX=XSTEP(NY oV U, TAU,Y, TAUM, DGI5, ANGVEL (1)}
IFITW/TAUM,LT.. 1) DX=DX/5.
C MODIFY DX IF A DESIRED X PRINTOUT STATION OCCURS IN NEXYT DX INTERVAL
IF(IUNIT.EQ.0) GO TC 61
NnO 118 I=1,IUNIT
IFIX+4DX LT XPRINT(T)) GO TO 118
DX=XPRINT{1)-X
XPRINT{I)=2.%XL
PRINT=1
118 CONTINUE
61 COMTYINUE
C CALCULATE X DERIVATIVES OF UyWaUVyViW: MAMELY DU ,OW,CUVyDVH
NN 200 I=1,NY
DUCT)I=DUF(INPDR,yR,UVP,h, V,UP,U,0MEGA)
OW(ID)=DWF (T 3R,VWPyW,VsWP, Uy, OMEGA)
DUVIIY=DUVF(I,D395,UV,UVP,U,UP,GUV,V,Y,TAU,TAUM)
DVW I )I=DVWF(I,D995, VWyVHP y Uy WP s GVW,V,Y, TAU, TAUM)

200 CONTINUE
IFLITER LEQ.2) GO TO 300
DO 205 I=1,NY
UNCT)Y=U(T)

WN(T)=W(T)
UYN(T)=UV(I])
VWN(T)=vW(])
C ESTIMATE VALUES 0OF U,W,UV,VW AT MIDDLE OF DX INTERVAL
UlTI=ul D) +DUlT) *0 X/ 2.
WIT)I=W(I)+DOW(I)})*DX/2.
QUIN=SQRT(U(TII®x%.2+W{] )*%x?2)
ANGVEL(I+1)=ATANIW(I)Y/UL(I))
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UVITI=UVT ) +DUVIT ) *DX/2,.
205  VH(L)=VW{T)+OVW(TI)I*CX/2,

DO 204 I=1,2

U(NY+T)=U{(NY)

QINY+I)=QINY])

ANGVEL(NY+T+1)=ANGVEL (NY+1)
204  WINY+I)=W(NY)

DPDR=DPCRF(X+CX/2 ., UINF,DUINF,
206 CONTINUE

XFL X)

C CALCULATE UsHWsUV,VW, AT NEW XSTATION

C EXTRAPOLATE UsWsUV,4VW TG X+DX

300 DO 240 I=1,NY
UNCT)=UNCT)+0X*DU (1)
WN{TY=WN{T)+DX:DW(I)
CNUT)I=SQRT(UN(T )% #2+WN(T ) *%2)
ANGVLNC(I+1) =ATAN(WNIT)/ZUNCI))
UVN{T)I=UVN(T ) +DX*DUV(T)
VWM CT) =VWN(T)+DX*DVW(T)

240 CONTINUE
DPDR =DPDORF (X4DX,UINFy DUINF 4 XF
TAUL=SQRT{UVNL1)* %24 VAN(]}*%*2)
UTAU =WSF(QN(1)

140.5%(Y (1) *#2) = { AHGVLN{4)=-ANGVLN(3)) /(Y{3)-Y(2))-(ANGVLN(3 )~

LX)

2 ¥Y(1), TAUL yUTAU,NU}
ANGVULNCLI)=ANGVLN(2) =Y (1) = (ANGVLN(3)=ANGVLN(2))}/(Y(2)-Y(1))

2ANGVLN(2)) 7 (Y(2)=Y (1)) /(0. 8x(Y{3)-Y(1)})

VCXN(1Y=-UTAU*=2%COS{ANGVLN(]1)
VCYNI({1) =-UT AU%%x2%xSIN{ ANGVLN (1)
7¢3 DO 460 [=1,2
UN(NY +1 )=UN(NY)
WNINY+T ) =WN{NY)}
QNINY+I)=QN (NY)
ANGVLNI T+#1 +NY )= ANGVLN(NY+]1)
UVNINY+])=0.C
460 VWN(NY+I)=0,.0
XSTAT=XSTAT+1
IF(X.GE.XL) PRNT=1
X=X+DX
R=R +DX
IF{C.LE.O0.21) GO TC 600
C=0.3
GO TO 601
~00 C=0,45
601 CONTINUE
GO TO 44
RETURN
END
FUNCYION DPDRF(XyUINF,DUINF+XF

}
)

LX)

£ THTS SUBROUTINE COMPUTES -~UINF*CUINF FROM INPUT VALUES
+ XFC 50}

DIMENSION UINFC 50),DUINF{ 50)
CALL INTOX, U XFyUINFLX40,2)
CALL INT(X,CU,XF4DUINF,LX,042)
DPDRF=-U*DU

RETURN

END

SUBROUTINE SPRINT{US WSyUVS VWS yNY,DELTA,D995,0ELTAX,THETAX,

C THIS SUBROUTINE PRINTS OUT RESULTS

IDELTAZy THETAZ yTHETZI Xy THETXZyH BETAyXSTAT R,y IUNIT,yV, Y,UT AU,PSID

29Xy VISC)
DIMENSION US( 23),WS( 23),UVS I
1 UXT 43) W XT 43) ,VXL(

23) 4 VWS

43),UVX( 43} 4VWXI(
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20

30

40

50

60

RTHETA=THETAX*US(NY)/VISC
INTEGER XSTAT
CF=2.0%(UTAU/US(NY) ) **2
PSI10P=PSIO*180./3.14159
PS10P=PSI0*180./3.14159
BETAP=(BETA-PSIO)*180./3.14159
WRITE(6,20) XSTAT4R,X

FORMAT{20HLIRESULTS AT XSTATION,14,9H WITH R =4 F10.2,' =1,F10.4)

WRITE{6,30) D995,DFLTA,DELTAX, THETAX,DELTAZ yTHETAZ, THEY ZX,THETX Z,
1H,BETAP,PSICOP,UTAU,US{NY},RTHETA,CF

FORMAT(* D3S5 =* yF10.64' DELTA = ,F10.64* CELTAX =',F10.6/
1* THETAX =9,Fl0.6,% DELTAZ =',Fl0.6,' THETAZ =',F10.6/
1]
¢

2' THETZIX =',F10.6,"' THETXZ =',F10.65" H =4, F10.4/
3% BETA =',F10.3,"' PSI =t 4Fl0.3,* UTAU =*,Fl0.4
4/ QINF =, F10.3y" RTHETA =',F10.2+* CF =4 ,F1d.5//)

K=NY+2

USQ=US(K) %2

DO 40 I=1,NY
YP(I)=Y (1 )*UTAU/VISC
YX(I)=yY{(1)/CS95
VX{T)=v{I)/US(K)
uvx(Iry=uvs(I1y/usq
VAX{I)=VWS{T)/USQ
WX{T)I=WS{TI)/US(K)
UXCI)Y=US{I)/LS(K)
WRITE(6,50)

FORMAT(* Y/L995 U/ QINF W/QINF V/QINF Uv/QIsQ VH/QISQ!

1,' Y I'Q Y*')
WRITE(6,60) (YXTT)gUXEI) g WXTI)oVXOT)UVX{T )y VWXLT )Y (1), YPUT),
11=1,NY)

FORMAT(7F9.5,F9.1)

C CNMPUTE MOMENTUM INTEGRAL BALANCE IN X DIRECTION

80

C=COS(PSIN)

S=SIN(PSIO)

UINF=US(NY)

TF{XSTAT.GT.1) GO 7O 80

SIO=(UINF*%2) & - THE TAX®C %22, THET ZX* CXS+THETAZRS*x %2 4DELTALZ*(C*S)
S20=(UINF* %2 ) #( -THFETAX*(CH%2-S%%2) =4 ATHETZ X%C % S+ (S*#2-Cx%2) *
ITHETAZ+DELTAZ*C*S+DELTAXX®S%®%x2) /R

ST2=0.

ST3=0.

RHS=0.

X0=X

S30=-UINF*C

S4U=UINFX{CxDELTAX+S*DULTALZ)

S50==0.5% (U INFx¥2 )X (CF*COS(BETA))

CAONTINUE

S1 =(UINF#*%2)#( ~THETAXXC*%2=2, *THETZ XkC* S+ THETAZ*S*x#24DELTAZ*C*S)
S2 ={UINF*%2 )k (-THETAXS(CH#2-S%%2)~4 ATHETZX*CHS+{S**2-Cx42 )%
1THETAZ+DELTAZ*C*S+DELTAX®Sx%2) /R

ST2=ST240.5*(52+520)*(X-X0)
S3 =-UINFx*C
§5 ==0.,5%*(UINF*#2)x(CF*CUS{BETA)})

S4 =UINFx(C*DELTAX+S*DELTAZ)
ST3=ST3+0.5%(54+540)*(53-530)
XLHS=(S1-S1CH+ST24ST3
RHS=0,5%(S54¢550) *( X-X0) +RHS
§20=52

$30=53

$40=54
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90

S$50=S85

X0=X

WRITE(6490) XLHS,RHS

FORMAT(* MOMENTUM INTEGRAL CHECK'/' LHS=',F14.,3,"' RHS=*,E14.3)
[IF(H.GT.2.,0} STOP

RETURN

END

FUNCTION XSTEP(NY,V,U,TAU,Y,TAUM,D995,PSIT)

C THIS SUBRNUTINE ESTIMATES X-STEP FROM CHARACTERISTICS

@

20

DIMENSION V(23 ),Ul 23),TAU( 23),Y( 23)

TANC=0.,0

DO 20 [=1,NY

B=0.15%TAUM2GORD(Y( 1) /D395) /U(NY)

TANC=AMAX1 (TANC,ABRS ((V(T}+B+(B%=%2+0,3*TAU(TI)}**0.5)/U{l)})
XSTEP=AMINI(Y{(L),Y(2)=-Y(1))*1./TANC

RETURN

END

FUNCTION DZFINY,WS,Y,UTAU,KL,BETA,US,Q,VISC)

THIS CCMPUTES DELTAZ2

DIMENSION WS(100),Y(100),US(100),Q(100}
A=SIN(RETAIR(Y(KL)*{Q(KL)=2,5%)TAU)-33,. 5«VI SC)/USINY)
B=AINTEGI{WS s Y KLy NY}/US{NY+2)

DIF=A+8

RETURN

END

FUNCTION THZXFINY WU, Y,UTAUKL,BETA,US+Q,VISC)

THIS COMPUTE THETAZ1

DIMENSION WU(100},Y¥(100),US(100),Q(100)

A=((UTAU*2,5%Y (KL)% (0 e*QIKLI*%2 /UTAU=20%Q(KL) +2,0*UTAU*2.5)~
1420, %UTAURVISC)/QUHY I *%2) 2 (COS(BETA)*SIN(BETA})

B=AINTEG ()Y s KL ¢ NY ) /US (NY #2) %2

THZ XF=A+B

RETURN

END

FUNCTION THZF(MY,WW,Y UTAU,KLsBETA,USyQVISC)

THIS COMPUTES THETAZ22

DIMENSION WW(190),Y{(100),US(100),Q(100)

A= ((UTAU¥2 . 52Y (KL I * (0 4*Q(KL)*%2/UT AU-2.0%Q(KL) +2,0*UTAU*2.5)~
16420, %UTAU=VISC) /QINY ) *%=2) % ( SIN(BETA) ) *%2
B=AINTEG(WH s Y oKLy NY)/US(NY+2) *%2

THZIF=A+8

RETURN

END

FUMCTIIN WSF(U, Y, TAUL,UTAU,NU)

TH'S COMPUTES QTAU,THE MAGNITUDE OF THE SHEAR VELOCITY

10

REAL NU

UTAUN=UTAU
F=1e-(UTAUN%X2/TAUL ) *%0.25

R=U=2,5%( UTAUNR(ALOGEYRUTAUN/NUY 42,) 42 .0%( TAUL ) **0 ,5%F )
IF (ABS{R/U).LF,0.,0001)G0 TO 10

DR==2,5%(ALCG(YXUTAUN/NU) +3., )

UTAUN=UTAUN-R/DR

GO TO 5

WSF=UTAUN

RETURN

END

FUNCTION AINTEG(Y XL yHM)

C THIS IS A UTILITY INTFGRATING RCUTING

DIMENSION YU 23),x( 23}
$=0.0

180

480.
481.
482,
483,
484,
485,
486,
487,
488.
489,
490.
491.
492,
493'
494,
495,
496,
497,
493,
499,
500.
501.
502.
503,
504,
505.
506.
507,
503.
509.
510.
511.
512.
513.
514.
515.
516.
517.
518.
519.
520.
521.
522.
523.
524.
525.
526.
527.
528.
529.
530.
531.
532.
533,
S34.
535.
536.
537.
538.
539.



1¢C

20

K=L +1

Z=(Y{K)=Y(K=2))/{X(K)-X{K=-1))

C=(ZH (Y (K =YK L) I/ (X(K+1)=X{K) P) /U X(K~1) =X {(K+1))
B=2-C*x{X{K-1)¢X(K})

A=Y{(K=1)-{(B+C*X(K-1}}*X{K~-1)

S=C+AR(X(K)-X({K=1))+0.5%B(X{K)*%x2-X{K-1)*%x2) +C*{ X{K) **x3~X(K-1}*%3

1}/3.0

IF(K.EQ.M) GO TO 20
K=K+1

GO 70 10

AINTEG=S

RETURN

END

FUNCTION DERIV(YyXsI)

THIS IS A UTILITY DIFFERENTIATING ROUTINE

DIMENSION Y( 23),X{ 23)

Z=(Y (D =Y (I=-1 1 Z(X(T)=X(I~1))
C={ZHIYLII=Y(I+1 )/ (X(I+1)=X(I))D/Z7(X{I=-1)-X{T+1))
B=Z-Cx(X{I-1)1+X(1))

DERIV=B+X(1)*2,0%C

RETURN

END

SUBRQOUT INE SYNQP(H, THETA,QINF,NY,NU,Y,Q,UTAU,DE LTA)

THIS SUBROUTINE GENERATES THE STREAMWISE STARTING VELOCITY
PROFILE USING THE LAW OF THE WALL-WAKE

U

10

50
55

RO

81

SE

20

REAL QC 23),Y( 23),NuU

CURVE FIT TO FIND COLES PI

DEL S=H*THETA

=-20/(1.—1¢O/H,

B=0.4*DELS*QINF/NU

N=0

PI=0.0

F=ALOG(B/ (L.+P1)) 42,042, 0%P [+A%( ], +1.6%PI40.,T761%PI%x%x2)/(1.+P1)

N=N+1

[FIN.GE.100) STOP

IF(F.LE.0.0001)G0O TO 20

DF==1,0/(1e4P1) 42, 4+A% (1,642, %0, 761%PT~(1.+1.6%PI+0.761%PI%%x2)/
1{1.+P1))/(1.+4P1)

PI=PI-0.8%F /DF

GO TO 10

CONTINUE
UTAU=0.4%(1a=1./HIE{ L 4PTI*QINF/(2.%( 1. +1.6%PI+ 0., 761%PI%%2))
DELTA=04*DELS*QINF/{(1,+PI)*UTAU)

K=NY+2

YN=NY

DO S0 I=1,K

Y{I)=DELTA*(Q.25%FLOAT(I)/YN+O, 75*%(FLOAT(I)}/YN) *%2)

QUI)=QINF +UTAUX(2.5%ALOG(Y(T)/DELTA)=2.5%¥P1*{1.,0+C0OS(3.1415*v(1)

1/DELTA)Y})

CONTINUE

DO 55 I=1,2

QUK=-2+1)=CINY)

WRITE (6,80) (Y(I),Q(T)s1=1,K)
FORMAT (20X 4 *SYNTHET IC VELCCITY PROFILE®*/23X,* Y 9
1/(20X,F10.5,F10.2))

WRITE(6,81) PI

FORMAT (25X, 'CCLES PI=*yF10.3)

RETURN

END

FUNCTION DUF(I,0PDR,R,yUVP,W,V,UP,U,CMEGA)
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C THIS EVALUATES CU/DX FRCM X-MOMENTUM

DIMENSICN UVP(23 ),W(23 ),V({ 23),UP( 23),U( 23}

CUF=(~DPDR=UVP (1) +W({ 1) #x¥2/R~V{T)*UP(1)+2,*OMFGAXW (1) +RECMESGA%%2 )
IWAVIDE |

RETURN

END

FUNCTION DWF{T,4RsVWP ,WsVWP,U,OMEGA)

C THIS EVALUATES CW/DX FRCM 7 MCOMENTUM

DIMENSION VWP(23 ),W(23 ),V(23 ),WP(23 ),U(23 )
DWF=(-U{I)*W{T)/R=V{ 1) *WP{I)=-VWP({I)=2.%CMEGA*U(T1))/U(])
RETURN

END

SUBRQOUT INE VCALC(NY UsWsV,sYsR,DPDR,UVP,OMEGA)

C CALCULATES THE NORMAL VELOCITY V EXCEPT FOR V(1)

50

100

DIMENSION U 23),W( 23),V( 23),Y( 23),UVP{ 23),XIG( 43)
K=NY+2

DO 50 I=1sNY

XIG(1)=0.0

XIGEI)=(UVP (T )+DPDR-(UCT ) %% 2¢W(T)%%2) /R=2 ,«CMEGA*W(T) =R*OMEGA**2)
1/UCT)**x2

CONTINUE

XIGINY+1)=XIG(NY)

DO 100 I=24NY

vili= UCTI*AINTEGIXIG Y, I-1,1)+V(I-1)*U(I)/U(I~-1)
CONTINUE

RETURN

END

FUMCTION DXF(NY,US,YsUTAU,kKL,BETA,Q,VISC)

C CALCULATES DELTA 1

DIMENSION US( 23),Y( 22),Q( 23)
UT=UTAU*SQRT(COS(BETA))

A= (Y(KLI®=(US{KL)}-2,5*UT 1=-33,5%VISC}) /US{NY)
B=AINTEG(US s YyKLyNY)/USINY+2)

DXF=Y(NY)-(A+B)

RETURN

END

FUNCTTION THXFINY,UU,Y,UTAU,KLBETA,DELTAXUSsQsVISC)

C CALCULATES THETALll

DIMENSION UUC 23),Y( 23),Q0 23),US( 23)

A= ((UTAU%2 ,SRY (KL IX(042Q (KLY **2/UTAU=-2.0%QIKL ) +2,0%UTAU%2,5)-
1420, %UTAURVISC) /UUIRY+2) )% (COS(BETA) ) %*2

B=AINTEGIUU Y KLoNY)  JUSINY#2)*%%2

THXF=Y{NY)-DNELTAX-(A+B)

RETURN

END

SURRUUT INE INTUIXV,YVyeXyYseMyNsL)

C A UTILITY INTERPCLATICN ROUTINE

40

55

DIMENSION X{ 23},Y( 23]
K=N

IF(XV.GTLX(2))1GO0 TO 40
YV=Y (1) +(Y(2)1=-Y (1) (XV=-X(1))/{X(2)=-X(1))
GO TN 100
IF{XV.GE.X{M=1)) GO TO 59
IF(K.NE.O) GO TO 55

DO 50 I=1,M

K=1-1

IF(X(I).GT.XV) GO TO 55
CONTINUE

CONTINUE

[F(K.LT ,M=4) GU TC 57
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K=K+1
GO TO 60
57 Yv=0.0
DO 58 I=1,L
Z=(Y{K)=Y(K=1)) /{X{K)=X{K=1))

C={Z+(Y{(K)-Y{K+1)I/{X{K+ L) =-X{K) } ) Z{XEK=1) =X{(K+1))

B=Z~C*(X{(K-1)+X(K))
A=Y (K=-1)-(B+CxX(K-1))*X(K-1)

K=K+1

58 YV={A+(B+CxXV)*xXV} /FLOAT(L)+YV
GO TC 100

59 K=M

60 YV=Y(K=1) +(Y(K)=Y{K=1))%(XV=X{K-1))/{X(K}=X(K=-1))

100 CONTINUE
RETURN
END
FUNCTION RLORD(Z)

C CALCULATES BRADSHAW'S L

RLORD=, 4%7
1F(2-.1811103,1104,1104

1104 [F(Z-1.1)1105+1106,1106

1105 RLOURD=,095-4C55%( 2. %2-1,)%*2
GO TO 1103

1106 RLORD=.016%EXP{~-10.%(7-1.1))

1102 RETURN
END
FUNCTION GORC(Z)

C CALCULATES BRADSHAW'S G(NCRMALIZED)

IF(2-.63)1107,11C8,11CA

1107 GNRD=17,.,5%7Z%%1.86
GO TO 1109

1108 [F(Z-.89)1110,1111,1111

1110 GNPD=9D,9%7-49.75
GO TO 1109

1111 GDRD=18,7*7Z+14.85

1109 RETURN
END

FUNCTION DUVF(T 30995, UV, UVP UyJP,GUV VY, TAU,TAUM)
C CALCULATES - DTAUX/DX FRCM X SHEAR STRESS EQUATION

DIMENSTON U( 23),UP( 23),UV( 23),UVP( 23),v{ 23),GUVv({ 23} ,TAuUl
1,Y( 23)
IF(I.EQ.1) GO TO 2
GUVP=DERIVIGUV,Y, 1)
GO 10 3
2 GUVP=(GUV (141 )=GUV I /(Y (L+1)-Y(T1))
3 DUVF={=V(T)*UVP(1)+40.3%(=TAU(I)*UP(T)-UV(I)*SQRT(TAU(I))
1/ (RLORD(Y(1}/N995)%D995)~-SQRT(TAUM) *GUVP)) /U(T)
RETURN
END
FUNCTION DVwF (140995, VW VWP U WP GVW,V, Y, TAU, TAUM)
C CALCULATES DTAUZ/DX FROM 2 SHEAR STRESS EQUATION
DIMENSTON Ul 23)1,WP( 23),VW( 23), VWP 23),V( 23),GVW( 23),TAUl
Ly¥{ 23)
IF(1.EQ.1) GO TO 2
GVWP=DERIVIGVW,Y, 1)
GO TO 3
2 GVWP=(GVW(TI+1)=-GVW(INI/ (Y (T+1)-Y(I})
3 DVWF={~VITY*VAP (T )40, 3% (-TAUL I} *WP{T)-VWITI*SQRT(TAU(T))

1/(RLORD(Y(1)/D995)%[995)~-SQRTITAUM) *GVWP)) /Ull)

RETURN
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END
SURROUTINE MAXSHE (MY, UV, VW, TAU,TAUM)

C CALCULATES MAXIMUM TAL AMD TAU FROM TAUX AMD TAUZ

10

DIMENSICN UV 23) ,Viul 23),TAUC 23)

TAUM=0.,0

DO 10 I=14NY

TAUCT)=SQRTIUVIT ) #% 24 VW (T )%%2)
TAUM=AMAXI(TAUM,TAU(T))

COMTINUE

KETURHN

END

SURROUT INE CFCALC(UV VW, QINF,KyY D995, GUVGVW,TAUM)

¢ CALCULATES G*TAUX AN CGX*TAUZ

DIMENSICN UVI( 23),VW( 23),Y( 23),GUVL 23),GVW( 23)
DN 130 I=1,K

GUV (T)=GORDIY(1)/D2a8)=(TAYN ) *x*x0, 5/QINF
GVWLT=GUVII)*VW(T])

GUV(T)=CUVTI*UVLET)

COMTINUE

RFTURM

END

FUNCTTON UWAKE(Y,UTAU,PI,DOG95,NU)

C CALCULATES VELOCITY ACCQORDING TC CCLES LAW OF WALL~ WAKE

REAL NU
yi=y
IF(YL.GT.D995)Y1=01CAQ5

UHAKF=UTAU*(?.§*ALUG(YI”HTAL/NU)+5.+2.5*PI*(l.-CﬂS(3.l‘lb*YI/DQQS)

in

RETURN
FND
$DATA
GARDCW 8-50.6 VANELESS DIFFUSEF
.18 1.01 40.5 1.5 .004218 1.77
. 585 49,6 N 1641 « 0304 <425
-. 008 ol ceole
Gh, 42,2 4C.3 38.4 36.7 35.2
2?7 .7 31,9 31.2 30. 8 30.7
-17.¢ -19.04 -18.81 -18,5 -15.4 -14.23
-10C. -7.27 -5.27 -1.613 -+ 434
15€37°10502
«13C2 35 .53 71 . 95 1.01
£STOP
/ %
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APPENDIX B

METHODS FOR ESTIMATING THE WALL SHEAR STRESS DIRECTION

As mentioned in chapter 2, it is generally more accurate to extrap-
olate the velocity direction to the wall rather than the shear stress
direction. Hence, most of the methods investigated are of the velocity
extrapolation type.

It is rather difficult to make a direct evaluation of the empirical
functions used to extrapolate the wall shear stress direction because
very few of the experimental velocity profiles which are available are
accurate in the region close to the wall. Hence, the wall conditions
are evaluated by such criteria as reliability, ease of application and
effect on overall predictions of the mean velocity field.

Method 1

This method simply approximates the wall shear stress direction as
being the same as the velocity direction at the first mesh point. As
Figure B.l indicates, this can significantly underestimate the wall
shear stress angle. On Figure B.l, the solid dots represent the approx-
imate locations of the first three computational mesh points.

Method 2

In this method, Bw is obtained by linear extrapolation of the
velocity angle from the first two computed mesh points. 1In the data
shown in Figure B.1l, this method appears to work quite well. 1In some
data sets, a curvature exists in the § versus y curve and it was
felt that Method 2 might in some cases cause errors. Hence, other meth-

ods were tried.
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Method 3
Method 3 is based on a suggestion of Nash (personal communication)
in which it is proposed to fit a cubic of the form
2 3
W=A+ BU + CU + DU (B.1)

to the computed values of U and W at the wall and the first two mesh
points. The fourth condition required to evaluate the constants is:

2 - vsin dr
3 VIV, dx

U T COs' Y
w w

3

This expression is derived from the momentum equations Equation 1.9 and
1.10 when the limit as y approaches zero is taken. This expression
indicates that in any situation with a pressure gradient, if there is
any skewing, the polar plot of W versus U 1is curved next to the wall.
Cham (1968) also concluded this.

The wall shear stress direction is found by differentiating Equa-

tion B.1l and evaluating it at U = 0.

(g%) = tany
““/wall h

Method 3 did not work well - in fact in some cases no suitable cubic
could be found. This is because the requirement imposed by Equation
B.2 is too severe for a simple cubic to satisfy if the cubic also sat-
isfies the requirements at the first two mesh points. This method was
dropped from further consideration.
Method &

In this method, which is what Nash actually suggested, the cubic is
fitted to the polar plot (wS Vs US) rather than to U and W directly.

This method is more difficult to apply but is not expected to function

significantly differently from Method 3.
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Method 5
Method 5 assumes that a parabola can be fitted to the tanget of the
velocity angle v at the first two mesh points.
tany = A + By + Cy2 (B.3)
Equation B.2 is also used to evaluate the constants. This method ap-
peared to have similar problems to Method 3. The difficulty with Meth-
ods 3, 4, and 5 all seem to be related to the fact that in real flows,
GZW/éUZ changes very rapidly near the wall, and this variation cannot be
represented by the simple functions tried here. This difficulty is
illustrated in Figure B.2.
Method 6
Method 6 is based on the two-dimensional method of Bradshaw. The
x component is obtained from:
T =T + 0.5 ) (B.4)

Xwall *1 dx

This expression is an approximation of the x momentum equation. The
factor 0.5 is used to compensate for the convective terms. The wall
shear stress magnitude is computed as discussed in Chapter 2. The di-
rection of the wall shear stress is thus computed from

cosy =T (B.5)

/T
X a1l wall

The results of this method were similar to those of Method 2, however in
some cases, at low momentum thickness Reynolds numbers, where the dis-
tance between the wall and the first mesh point is as great as 0.16995,
some oscillations in the computed wall shear stress direction appeared.

Method 2 was considered to be preferable.
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Method 7

This method is an attempt to improve on Method 6 by approximating
the convective terms directly. Using the continuity equation (Equation
1.8) and the momentum equations (Equations 1.9 and 1.10) the following

expressions can be obtained.

2 or
o)} ouv _ _dp x
x dy  dx * Jy (B.6)
or
oUW LW 2 (B.7)

dx dy  dy

Rearranging and integrating from the wall to the first mesh point, one

obtains
y 2
- dp ou_
T T Tx = UV, + Y g T f ox dy (B.8)
w o
y
1
MU
T,T T, SW VOt f 5 ¢ (B.9)
w o
Thus T and T, can be found if the definite integrals can be
w \")
evaluated. However, V is not known accurately (in fact, when this

1

method was actually tried, the approximation for V1 was not as good
as is described in Chapter 2). Furthermore, the definite integrals
could only be evaluated by assuming a functional form for the velocity
profiles. This is in fact what Bradshaw did for Method 6 and it is not
felt that Method 7 would offer any obvious advantage over Method 6.
Method 7 is, however, more difficult to apply.
Method 8

This is the method which is actually described in Chapter 2. Meth-

od 8 is a slight variation of Method 2. 1f the B versus y curve has

a curvature in the region of the first three mesh points, this curvature

188



is continued in the curve which extrapolates the velocity direction to

the wall. 1In some cases this method should be a better approximation

than Method 2.
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Polynomial has fairly
uniform curvature,
predicts high s Some-
times no at all.

Actual flow
shows sharp
change in curvature ™~
near wall

Figure B.2 3 -vo. y Near Wall
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APPENDIX C

ATTEMPTS TO COMPUTE ROTATING DISC FLOWS

In the present research program, an unsuccessful attempt was made
to predict the rotating disc flows of Cham. In his rotating disc experi-
ments, a simple circular disc was rotated about its axis in free air
(see Figure 1.2(e¢)). Since the no slip boundary condition holds at the
surface of the disc, the fluid close to the disc is forced to rotate.
This effect in turn generates centrifugal forces within the rotating
fluid which tend to drive the flow radially outward. In our attempt at
prediction, a coordinate system fixed to the surface of the disc was
used and thus Coriolis acceleration terms were included in the momentum
equations. The x direction was oriented in the radial direction, but
because U, which is a divisor in the momentum and shear stress equa-
tions in the form of Equation 3.2, is always zero in the free stream,
difficulties were encountered. Division by U 1is a consequence of the
explicit method used. It need not occur in an implicit forward differ-
encing method and Cooper (1971) successfully computed the rotating disc
flows of Cham using a modification implicit eddy viscosity method of
Cebeci and Smith (Kline et. al. 1969). To circumvent the problem, in
our work an artificial radial flow of U # 0 was superimposed on the
free-stream and an attempt was made to establish the limit as this ra-
dial flow was reduced to zero. Unfortunately, when the imposed radial
flow became small, the number of x-steps became immense (on the oriler
of 1000) and various numerical inaccuracies accumulated and destroyed
the predictions. It was then realized that this class of flows could
not be properly treated with our present numerical technique and further

efforts were abandoned for the time being.
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APPENDIX D

SUGGESTED IMPROVEMENTS IN THE COMPUTER PROGRAM

Although the numerical method used in the present study works rea-
sonably well and is considered to be adequate for the situations consid-
ered, a number of desirable improvements are now evident.
a. Difficulties arise from Equation 3.10, the function which distributes
the mesh points in the y direction. The first problem concerns the
constant C which fixes the first mesh point at a y+ of 30. As dis-
cussed in Chapter 4, at low Reynolds numbers, it was felt desirable to
keep the first point at this value of y+ and take the consequent lim-
itations in accuracy. At high Reynolds numbers, this restriction is not
needed. At momentum Reynolds numbers higher than about 20,000, the first
mesh point will be much closer to the wall than the first mesh point is
to the second mesh point. This is undesirable from the standpoint of
differentiating and interpolating on the computed profiles. Furthermore,
it causes a small =x-step (see Equation 3.12) which increases computer

time and at the same time increases errors due to roundoff, truncation

and interpolation. Thus it is recommended that the y+ at the first
mesh point be allowed to increase with Reynolds number such that the
first mesh point is about the same distance from the wall as the second
mesh point is from the first. It should be pointed out that Equation
2.36 will have to be reworked so that V1 is a function of y+.

The second problem concerns the two alternate y-grids used. Due
to the fact that the value of y at the first mesh point changes very
little at alternate x-stations, it turns out that the grids computed

by Equation 3.10 with two different values of ¢ are often not very
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different and the advantage of interpolation is lost. This can increasc
the chance of instabilities. On the other bhand, Equation 3.10 will
always produce alternate grids which are essentially the same in the
outer part of the flow. This is desirable since interpolation has been
found unnecessary in this region and interpolation errors can effect the

location of & and result in surprisingly large effects on the cal-

995

culations. (This was discovered when an alternate grid was used which
was esactly interspaccd between the previous grid.) Thus, it is recom-
mended that a function be developed which will distribute the points on
two alterniate grids and will produce 1 considerable change in distribu-
tion of points in thc inner part of the turbulent region and very little
in the outer part regardless of the Jocation of the first mesh point.

b. As mentioned above, the value of & is very sensitive to inter-

995

polation errors in the outer part of the flow. 1In the part of the flow

around y = Ay/.y  is small and consequently dy/SU is very large.

5 ;
995
This sensitivity of 5995 produces a rather large change in the calcula-

tions when a small number of mesh points (10 for example) are used with
the Nash ¢nd Bradshaw methods. In the Nash and Bradshaw methods 6995
is a paramecter in the calculation of the shear stress in the outer part
of the flow. It is recommended that the dissipation length and diffusion

functions be¢ normalized on an integral property of the boundary layer
g prop y Y

(like 811 or 61) to avoid this problem.
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